Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

Code Block
bgColor#FFCCCC
langc
#include <png.h> /* From libpng */
#include <string.h>
 
void func(png_structp png_ptr, int length, const void *user_data) { 
  png_charp chunkdata;
  chunkdata = (png_charp)png_malloc(png_ptr, length + 1);
  /* ... */
  memcpy(chunkdata, user_data, length);
  /* ... */
 }

If length has the value −1, the addition wraps around to yields 0, and png_malloc() subsequently returns a null pointer, which is assigned to chunkdata. The chunkdata pointer is later used as a destination argument in a call to memcpy(), resulting in user-defined data overwriting memory starting at address 0. In the case of the ARM and XScale architectures, the 0x0 address is mapped in memory and serves as the exception vector table; consequently, dereferencing 0x0 did not cause an abnormal program termination.

Compliant Solution

...

Code Block
bgColor#ccccff
langc
#include <png.h> /* From libpng */
#include <string.h>

void void func(png_structp png_ptr, size_t length, const void *user_data) { 
  png_charp chunkdata;
  if (length == SIZE_MAX) {
    /* Handle  chunkdataerror */
  }
  chunkdata = (png_charp)png_malloc(png_ptr, length + 1);
  if (NULL == chunkdata) {
    /* Handle error */
  }
  /* ... */
  memcpy(chunkdata, user_data, length);
  /* ... */

 }

Noncompliant Code Example

In this noncompliant code example, input_str is copied into dynamically allocated memory referenced by c_str. If malloc() fails, it returns a null pointer that is assigned to c_str. When c_str is dereferenced in memcpy(), the program exhibits undefined behavior.  Additionally, if input_str is a null pointer, the call to strlen() dereferences a null pointer, also resulting in undefined behavior. This code also violates void MEM32-C. Detect and handle memory allocation errors.

...

Compliant Solution

This compliant solution ensures ensures that both input_str is non-null, and the pointer returned by malloc() is are not null. 

Code Block
bgColor#ccccff
langc
#include <string.h>
#include <stdlib.h>
 
void f(const char *input_str) {
  size_t size;
  char *c_str;
 
  if (NULL == input_str) {
    /* Handle error */
  }
  
  size = strlen(input_str) + 1;
  c_str = (char *)malloc(size);
  if (NULL == c_str) {
    /* Handle error */
  }
  memcpy(c_str, input_str, size);
  /* ... */
  free(c_str);
  c_str = NULL;
  /* ... */
}

...

The sk pointer is initialized to tun->sk before checking if tun is a null pointer. Because null pointer dereferencing is undefined behavior, the compiler (GCC in this case) can optimize away the if (!tun) check because it is performed after tun->sk is dereferencedaccessed, implying that tun is non-null. As a result, this noncompliant code example is vulnerable to a null pointer dereference exploit, because it is possible to permit null pointer dereferencing on several platforms, for example, using mmap(2) with the MAP_FIXED flag on Linux and Mac OS X or using the shmat(2) POSIX function with the SHM_RND flag on Linux [Liu 2009].

...

Code Block
bgColor#ccccff
langc
static unsigned int tun_chr_poll(struct file *file, poll_table * wait)  {
  struct tun_file *tfile = file->private_data;
  struct tun_struct *tun = __tun_get(tfile);
  struct sock *sk;
  unsigned int mask = 0;

  if (!tun)
    return POLLERR;

  sk = tun->sk;

  DBG(KERN_INFO "%s: tun_chr_poll\n", tun->dev->name);

  poll_wait(file, &tun->socket.wait, wait);

  if (!skb_queue_empty(&tun->readq))
    mask |= POLLIN | POLLRDNORM;

  if (sock_writeable(sk) ||
     (!test_and_set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags) &&
     sock_writeable(sk)))
    mask |= POLLOUT | POLLWRNORM;

  if (tun->dev->reg_state != NETREG_REGISTERED)
    mask = POLLERR;

  tun_put(tun);
  return mask;/* The remaining code is omitted because it is unchanged... */

}

Risk Assessment

Dereferencing a null pointer results in undefined behavior, typically abnormal program termination. In some situations, however, dereferencing a null pointer can lead to the execution of arbitrary code [Jack 2007], [van Sprundel 2006]. The indicated severity is for this more severe case; on platforms where it is not possible to exploit a null pointer dereference to execute arbitrary code, the actual severity is low.

...

Bibliography

[Goodin 2009] 
[Jack 2007] 
[Liu 2009] 
[van Sprundel 2006] 
[Viega 2005]Section 5.2.18, "Null-Pointer Dereference"

...