...
When precise computation is necessary, carefully and methodically evaluate the cumulative error of the computations, regardless of whether decimal or binary is used, to ensure that the resulting error is within tolerances. Consider using numerical analysis to properly understand the numerical properties of the problem. A useful introduction can be found in Goldberg 91.
Risk Analysis
Using a representation other than floating point may allow for more precision and accuracy for critical arithmetic.
Recommendation | Severity | Likelihood | Remediation Cost | Priority | Level |
---|---|---|---|---|---|
FLP00-A | low | probable | medium | P4 | L3 |
Related Vulnerabilities
Search for vulnerabilities resulting from the violation of this rule on the CERT website.
References
Wiki Markup |
---|
\[[IEEE 754 2006|AA. C References#IEEE 754 2006]\] \[[ISO/IEC JTC1/SC22/WG11|AA. C References#ISO/IEC JTC1/SC22/WG11]\] \[[ISO/IEC PDTR 24772|AA. C References#ISO/IEC PDTR 24772]\] "PLF Floating Point Arithmetic" \[[ISO/IEC TR 24732]\] [Extension for the programming language C to support decimal floating-point arithmetic|http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1290.pdf]. March, 2008. \[[IEEE 754|AA. C References#IEEE 754 2006]\] \[[Goldberg 91|AA. C References#Goldberg 91]\] |
...