Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

Potentially exploitable undefined behavior can result from any of the following:

  • Using pointer arithmetic so that the result does not point into or just past the end of the same object
  • Using such pointers in arithmetic expressions
  • Dereferencing pointers that do not point to a valid object in memory
  • Using an array subscript so that the resulting reference does not refer to an element in the array

The C Standard identifies the following distinct situations in which undefined behavior (UB) can arise as a result of invalid pointer operations:

UB

Description

Example Code

46

Addition or subtraction of a pointer into, or just beyond, an array object and an integer type produces a result that does not point into, or just beyond, the same array object.

Forming Out-of-Bounds Pointer,
Improper Scaling, Null Pointer Arithmetic

47

Addition or subtraction of a pointer into, or just beyond, an array object and an integer type produces a result that points just beyond the array object and is used as the operand of a unary * operator that is evaluated.

Dereferencing Past the End Pointer, Using Past the End Index

49

An array subscript is out of range, even if an object is apparently accessible with the given subscript (as , for example, in the lvalue expression a[1][7] given the declaration int a[4][5]).

Apparently Accessible Out-of-Range Index

62

An attempt is made to access, or generate a pointer to just past, a flexible array member of a structure when the referenced object provides no elements for that array.

Pointer Past Flexible Array Member

...

In this noncompliant code example, the function f() attempts to validate the index before using it as an offset to the statically allocated table of integers. However, the function fails to reject negative index values. When index is less than zero, the behavior of the addition expression in the return statement of the function is undefined behavior 46. On some implementations, the addition alone can trigger a hardware trap. On other implementations, the addition may produce a result that when dereferenced can trigger triggers a hardware trap. Other implementations still may produce a dereferenceable pointer that points to an object distinct from table. Using such a pointer to access the object may lead to information exposure or cause the wrong object to be modified.

...

Compliant Solution

Another , slightly simpler and potentially more efficient compliant solution is to use an unsigned type to avoid having to check for negative values while still rejecting out-of-bounds positive values of index:

...

This noncompliant code example shows the flawed logic in the Windows Distributed Component Object Model (DCOM) Remote Procedure Call (RPC) interface that was exploited by the W32.Blaster.Worm. The error is that the while loop in the GetMachineName() function (used to extract the host name from a longer string) is not sufficiently bounded. When the character array pointed to by pwszTemp does not contain the backslash character among the first MAX_COMPUTERNAME_LENGTH_FQDN + 1 elements, the final valid iteration of the loop will dereference past - the - end pointer, resulting in exploitable  undefined behavior 47. In this case, the actual exploit allowed the attacker to inject executable code into a running program. Economic damage from the Blaster worm has been estimated to be at least $525 million [Pethia 2003].

For a discussion of this programming error in the Common Weakness Enumeration database, see CWE-119, "Failure to constrain operations Improper Restriction of Operations within the bounds Bounds of a memory bufferMemory Buffer," and CWE-121, "Stack-based buffer overflow."Buffer Overflow" [MITRE 2013].

Code Block
bgColor#ffcccc
langc
error_status_t _RemoteActivation(
      /* ... */, WCHAR *pwszObjectName, ... ) {
   *phr = GetServerPath(
              pwszObjectName, &pwszObjectName);
    /* ... */
}

HRESULT GetServerPath(
  WCHAR *pwszPath, WCHAR **pwszServerPath ){
  WCHAR *pwszFinalPath = pwszPath;
  WCHAR wszMachineName[MAX_COMPUTERNAME_LENGTH_FQDN+1];
  hr = GetMachineName(pwszPath, wszMachineName);
  *pwszServerPath = pwszFinalPath;
}

HRESULT GetMachineName(
  WCHAR *pwszPath,
  WCHAR wszMachineName[MAX_COMPUTERNAME_LENGTH_FQDN+1])
{
  pwszServerName = wszMachineName;
  LPWSTR pwszTemp = pwszPath + 2;
  while (*pwszTemp != L'\\')
    *pwszServerName++ = *pwszTemp++;
  /* ... */
}

...

In this compliant solution, the while loop in the GetMachineName() function is bounded so that the loop terminates when a backslash character is found, the null-termination character (L'\0') is discovered, or the end of the buffer is reached. This code does not result in a buffer overflow even if no backslash character is found in wszMachineName.

...

Third, the function violates INT30-C. Ensure that unsigned integer operations do not wrap when calculating the size of memory to allocate, which could lead to wrapping when 1 is added to pos or when size is multiplied by the size of int.

For a discussion of this programming error in the Common Weakness Enumeration database, see CWE-122, "Heap-based buffer overflowBuffer Overflow," and CWE-129, "Improper validation of array index."Validation of Array Index" [MITRE 2013].

Code Block
bgColor#ffcccc
langc
#include <stdlib.h>
 
static int *table = NULL;
static size_t size = 0;

int insert_in_table(size_t pos, int value) {
  if (size < pos) {
    int *tmp;
    size = pos + 1;
    tmp = (int *)realloc(table, sizeof(*table) * size);
    if (tmp == NULL) {
      return -1;   /* Failure */
    }
    table = tmp;
  }

  table[pos] = value;
  return 0;
}

...

This compliant solution correctly validates the index pos by using the <= relational operator, ensures the multiplication will not overflow, and avoids modifying size until it has verified that the call to realloc() was successful:

Code Block
bgColor#ccccff
langc
#include <stdint.h>
#include <stdlib.h>
 
static int *table = NULL;
static size_t size = 0;

int insert_in_table(size_t pos, int value) {
  if (size <= pos) {
    int *tmp;
    if ((pos + 1) > SIZE_MAX / sizeof(*table)) {
      return -1;
    }
 
    tmp = (int *)realloc(table, sizeof(*table) * (pos + 1));
    if (tmp == NULL) {
      return -1;
    }
    /* Modify size only after realloc() succeeds */
    size  = pos + 1;
    table = tmp;
  }

  table[pos] = value;
  return 0;
}

...

This noncompliant code example declares matrix to consist of 7 rows and 5 columns in row-major order. The function init_matrix then iterates over all 35 elements in an attempt to initialize each to the value given by the function argument x. However, because multidimensional arrays are declared in C in row-major order, and the function iterates over the elements in column-major order, and when the value of j reaches the value COLS during the first iteration of the outer loop, the function attempts to access element matrix[0][5]. Because the type of matrix is int[7][5], the j subscript is out of range, and the access has undefined behavior 49.

...

In this noncompliant code example, the function find() attempts to iterate over the elements of the flexible array member buf, starting with the second element. However, because function g() does not allocate any storage for the member, the expression first++ in find() attempts to form a pointer just past the end of buf when there are no elements. This attempt results in is undefined behavior 62 (see MSC21-C. Use robust loop termination conditions for more information).

Code Block
bgColor#ffcccc
langc
#include <stdlib.h>
 
struct S {
  size_t len;
  char buf[];  /* Flexible array member */
};

const char *find(const struct S *s, int c) {
  const char *first = s->buf;
  const char *last  = s->buf + s->len;

  while (first++ != last) { /* Undefined behavior */
    if (*first == (unsigned char)c) {
      return first;
    }
  }
  return NULL;
}
 
void g(void) {
  struct S *s = (struct S *)malloc(sizeof(struct S));
  if (s == NULL) {
    /* handleHandle error */
  }
  s->len = 0;
  find(s, 'a');
}

...

Code Block
bgColor#ccccff
langc
#include <stdlib.h>
 
struct S {
  size_t len;
  char buf[];  /* Flexible array member */
};

const char *find(const struct S *s, int c) {
  const char *first = s->buf;
  const char *last  = s->buf + s->len;

  while (first != last) { /* Avoid incrementing here */
    if (*++first == (unsigned char)c) {
      return first;
    }
  }
  return NULL;
}
 
void g(void) {
  struct S *s = (struct S *)malloc(sizeof(struct S));
  if (s == NULL) {
    /* handleHandle error */
  }
  s->len = 0;
  find(s, 'a');
}

...

This function fails to check if the allocation succeeds; , which is a violation of ERR33-C. Detect and handle standard library errors. If the allocation fails, then malloc() returns a null pointer. The null pointer is added to offset and passed as the destination argument to memcpy(). Because a null pointer does not point to a valid object, the result of the pointer arithmetic is undefined behavior 46.

An attacker who can supply the arguments to this function can exploit it to write to execute arbitrary code. This can be accomplished by providing a sufficiently an overly large value for block_size to cause size, which causes malloc() to fail and return a null pointer. The offset argument will then serve as the destination address to the call to memcpy(). The The attacker can specify the data and data_size arguments can to provide the address and length of the address, respectively, that the the attacker wishes to write into the memory referenced by offset. Consequently, The overall result is that the call to memcpy() can be exploited by an attacker to overwrite an address arbitrary memory location with an attacker-supplied address; , typically resulting in arbitrary code execution.

...

Code Block
bgColor#ccccff
langc
#include <string.h>
#include <stdlib.h>

char *init_block(size_t block_size, size_t offset,
                 char *data, size_t data_size) {
  char *buffer = malloc(block_size);
  if (NULL == buffer) {
    /* Handle error */
  }
  if (data_size > block_size || block_size - data_size > offset) {
    /* Data won't fit in buffer, handle error */
  }
  memcpy(buffer + offset, data, data_size);
  return buffer;
}

Risk Assessment

Accessing Writing to out-of-range pointers or array subscripts for writing can result in a buffer overflow and the execution of arbitrary code with the permissions of the vulnerable process. Reading from out-of-range pointers or array subscripts can result in unintended information disclosure.

...

CVE-2008-1517 results from a violation of this rule. Before Mac OSX version 10.5.7, the xnu XNU kernel accessed an array at an unverified user-input index, allowing an attacker to execute arbitrary code by passing an index greater than the length of the array and therefore accessing outside memory [xorl 2009].

...

ISO/IEC TR 24772:2013Arithmetic Wrap-around Error [FIF]
Unchecked Array Indexing [XYZ]
ISO/IEC TS 17961Forming or using out-of-bounds pointers or array subscripts [invptr]
MITRE CWECWE-119, Failure to constrain operations Improper Restriction of Operations within the bounds Bounds of a memory bufferMemory Buffer
CWE-122, Heap-based buffer overflowBuffer Overflow
CWE-129, Unchecked array indexingImproper Validation of Array Index
CWE-788, Access of memory location Memory Location after end End of bufferBuffer

Bibliography

[Finlay 2003] 
[Microsoft 2003] 
[Pethia 2003] 
[Seacord 20132013b]Chapter 1, "Running with Scissors"
[Viega 2005]Section 5.2.13, "Unchecked Array Indexing"
[xorl 2009 ]"CVE-2008-1517: Apple Mac OS X (XNU) Missing Array Index Validation"

...