...
This statement implies that destroying a mutex while a thread is waiting on it is undefined behavior.
Noncompliant Code Example
This noncompliant code example creates several threads that each invoke the do_work()
function, passing a unique number as an ID. The do_work()
function initializes the lock
mutex if the argument is 0 and destroys the mutex if the argument is max_threads - 1
. In all other cases, the do_work()
function provides normal processing. Each thread, except the final cleanup thread, increments the atomic completed
variable when it is finished.
...
Code Block | ||||
---|---|---|---|---|
| ||||
#include <stdatomic.h> #include <threads.h> mtx_t lock; /* Atomic so multiple threads can modify safely */ atomic_int completed = ATOMIC_VAR_INIT(0); enum { max_threads = 5 }; int do_work(void *arg) { int *i = (int *)arg; if (*i == 0) { /* Creation thread */ if (thrd_success != mtx_init(&lock, mtx_plain)) { /* Handle error */ } atomic_store(&completed, 1); } else if (*i < max_threads - 1) { /* Worker thread */ if (thrd_success != mtx_lock(&lock)) { /* Handle error */ } /* Access data protected by the lock */ atomic_fetch_add(&completed, 1); if (thrd_success != mtx_unlock(&lock)) { /* Handle error */ } } else { /* Destruction thread */ mtx_destroy(&lock); } return 0; } int main(void) { thrd_t threads[max_threads]; for (size_t i = 0; i < max_threads; i++) { if (thrd_success != thrd_create(&threads[i], do_work, &i)) { /* Handle error */ } } for (size_t i = 0; i < max_threads; i++) { if (thrd_success != thrd_join(threads[i], 0)) { /* Handle error */ } } return 0; } |
Compliant Solution
This compliant solution eliminates the race conditions by initializing the mutex in main()
before creating the threads and by destroying the mutex in main()
after joining the threads:
Code Block | ||||
---|---|---|---|---|
| ||||
#include <stdatomic.h> #include <threads.h> mtx_t lock; /* Atomic so multiple threads can increment safely */ atomic_int completed = ATOMIC_VAR_INIT(0); enum { max_threads = 5 }; int do_work(void *dummy) { if (thrd_success != mtx_lock(&lock)) { /* Handle error */ } /* Access data protected by the lock */ atomic_fetch_add(&completed, 1); if (thrd_success != mtx_unlock(&lock)) { /* Handle error */ } return 0; } int main(void) { thrd_t threads[max_threads]; if (thrd_success != mtx_init(&lock, mtx_plain)) { /* Handle error */ } for (size_t i = 0; i < max_threads; i++) { if (thrd_success != thrd_create(&threads[i], do_work, NULL)) { /* Handle error */ } } for (size_t i = 0; i < max_threads; i++) { if (thrd_success != thrd_join(threads[i], 0)) { /* Handle error */ } } mtx_destroy(&lock); return 0; } |
Risk Assessment
Destroying a mutex while it is locked may result in invalid control flow and data corruption.
Rule | Severity | Likelihood | Remediation Cost | Priority | Level |
---|---|---|---|---|---|
CON31CON50-CCPP | Medium | Probable | High | P4 | L3 |
Automated Detection
Tool | Version | Checker | Description |
---|---|---|---|
5.0 |
| Can detect violations of this rule with CERT C Rule Pack | |
Parasoft C/C++test | 9.5 | BD-RES-FREE, BD-RES-INVFREE |
Related Vulnerabilities
Search for vulnerabilities resulting from the violation of this rule on the CERT website.
Related Guidelines
Bibliography
[ISO/IEC 9899:2011] | 7.26.4.1, "The mtx_destroy Function" |
...