Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.
Comment: minor editorial changes

Enumerations in C++ come in two forms: scoped enumerations in which the underlying type is fixed and unscoped enumerations in which the underlying type may or may not be fixed. The range of values that can be represented by either form of enumeration may include enumerator values not specified by the enumeration itself. The range of valid enumeration values for an enumeration type is defined by the C++ Standard, [dcl.enum], in paragraph 8 [ISO/IEC 14882-2014]:

For an enumeration whose underlying type is fixed, the values of the enumeration are the values of the underlying type. Otherwise, for an enumeration where emin is the smallest enumerator and emax is the largest, the values of the enumeration are the values in the range bmin to bmax, defined as follows: Let K be 1 for a two’s complement representation and 0 for a one’s complement or sign-magnitude representation. bmax is the smallest value greater than or equal to max(|emin| − K, |emax|) and equal to 2M − 1, where M is a non-negative integer. bmin is zero if emin is non-negative and −(bmax + K) otherwise. The size of the smallest bit-field large enough to hold all the values of the enumeration type is max(M, 1) if bmin is zero and M + 1 otherwise. It is possible to define an enumeration that has values not defined by any of its enumerators. If the enumerator-list is empty, the values of the enumeration are as if the enumeration had a single enumerator with value 0.

According to the The C++ Standard, [expr.static.cast], paragraph 10, states the following:

A value of integral or enumeration type can be explicitly converted to an enumeration type. The value is unchanged if the original value is within the range of the enumeration values (7.2). Otherwise, the resulting value is unspecified (and might not be in that range). A value of floating-point type can also be explicitly converted to an enumeration type. The resulting value is the same as converting the original value to the underlying type of the enumeration (4.9), and subsequently to the enumeration type.

...

Similar to the previous compliant solution, this compliant solution uses an unscoped enumeration but provides a fixed underlying type of type int, allowing any value from the parameter to be converted to a valid enumeration value:.

Code Block
bgColor#ccccff
langcpp
enum EnumType : int {
  First,
  Second,
  Third
};

void f(int intVar) {
  EnumType enumVar = static_cast<EnumType>(intVar);
}

...