Generically typed code can be freely used with raw types when attempting to preserve compatibility between non-generic legacy code and newer generic code. However, using raw types with generic code causes most Java compilers to issue "unchecked" warnings. When generic and non-generic types are used together correctly, these warnings are not catastrophic, but at other times, these warnings may denote potentially unsafe operations. If generic and non-generic code must be used together, these warnings should not be simply ignored.
According to the Java Language Specification [JLS 2005] section 4.8 "Raw Types":
The use of raw types is allowed only as a concession to compatibility of legacy code. The use of raw types in code written after the introduction of genericity into the Java programming language is strongly discouraged. It is possible that future versions of the Java programming language will disallow the use of raw types.
If a parameterized type tries to access an object that is not of the parameterized type, heap pollution results. For instance, consider the code snippet below.
Code Block |
---|
List l = new ArrayList<Integer>(); List<String> ls = l; // Produces unchecked warning |
It is insufficient to rely on unchecked warnings alone to detect violations of this guideline. According to the Java Language Specification [JLS 2005] section 4.12.2.1 "Heap Pollution":
Wiki Markup Note that this does not imply that heap pollution only occurs if an unchecked warning actually occurred. It is possible to run a program where some of the binaries were compiled by a compiler for an older version of the Java programming language, or by a compiler that allows the unchecked warnings to suppressed _\[sic\]_. This practice is unhealthy at best.
Extending legacy classes and generifying the overriding methods is not a panacea as this is made illegal by the Java Language Specification [JLS 2005]. It is best to avoid mixing generic and non-generic code.
Noncompliant Code Example
This noncompliant code example produces an unchecked warning because the raw type of the List.add()
method is used (the list
parameter in addToList()
method) instead of the parameterized type. To make this code compile cleanly, the @SuppressWarnings
annotation is used.
Code Block | ||
---|---|---|
| ||
public class MixedTypes { @SuppressWarnings("unchecked") private static void addToList(List list, Object obj) { list.add(obj); // Unchecked warning } private static void print() { List<String> list = new ArrayList<String> (); addToList(list, 1); System.out.println(list.get(0)); } public static void main(String[] args) { MixedTypes.print(); } } |
When executed, this code produces an exception because the value returned by list.get(0)
is not of the proper type, that is, String
:
Code Block |
---|
Exception in thread "main" java.lang.ClassCastException: java.lang.Integer cannot be cast to java.lang.String at Raw.print(Test.java:11) at Raw.main(Test.java:14) |
Compliant Solution
By gleaning information from the diagnostic exception message, the error can be quickly traced to the line addToList(1)
in the noncompliant code example. Changing this to addToList("1")
is a superficial defense. To resolve the issue, use parameterized types consistently.
To enforce compile time checking of types, replace the parameters to the method addToList()
with List<String> list
and String str
.
Code Block | ||
---|---|---|
| ||
class Parameterized { private static void addToList(List<String> list, String str) { list.add(str); // Unchecked warning } private static void print() { List<String> list = new ArrayList<String> (); addToList(list, "1"); System.out.println(list.get(0)); } public static void main(String[] args) { Parameterized.print(); } } |
The compiler does not allow insertion of an Object
once list
is parameterized. Likewise, addToList()
cannot be called with an argument whose type produces a mismatch.
Noncompliant Code Example
This noncompliant code example compiles and runs cleanly. The method printOne()
intends to print the value one, either as an int
or as a double
depending on the type of the variable type
.
Code Block | ||
---|---|---|
| ||
class BadListAdder { @SuppressWarnings("unchecked") private static void addToList(List list, Object obj) { list.add(obj); // Unchecked warning } private static <T> void printOne(T type) { if (!(type instanceof Integer || type instanceof Double)) { System.out.println("Cannot print in the supplied type"); } List<T> list = new ArrayList<T>(); addToList(list, 1); System.out.println(list.get(0)); } public static void main(String[] args) { double d = 1; int i = 1; System.out.println(d); BadListAdder.printOne(d); System.out.println(i); BadListAdder.printOne(i); } } |
However, despite list
being correctly parameterized, this method prints '1' and never '1.0' because the int
value '1' is always added to list
without being type checked.
This code produces the output:
Code Block |
---|
1.0 1 1 1 |
Compliant Solution
This compliant solution generifies the addToList()
method to eliminate possible type violations.
Code Block | ||
---|---|---|
| ||
class GoodListAdder { private static void addToList(List<Integer> list, Integer i) { list.add(i); } private static void addToList(List<Double> list, Double d) { list.add(d); } private static <T> void printOne(T type) { if (type instanceof Integer) { List<Integer> list = new ArrayList<Integer>(); addToList(list, 1); System.out.println(list.get(0)); } else if (type instanceof Double) { List<Double> list = new ArrayList<Double>(); // This will not compile if addToList(list, 1) is used addToList(list, 1.0); System.out.println(list.get(0)); } else { System.out.println("Cannot print in the supplied type"); } } public static void main(String[] args) { double d = 1; int i = 1; System.out.println(d); GoodListAdder.printOne(d); System.out.println(i); GoodListAdder.printOne(i); } } |
This code compiles cleanly and runs as expected by printing:
Code Block |
---|
1.0 1.0 1 1 |
If the method addToList()
is externally defined (such as in a library or is an upcall method) and cannot be changed, the same compliant method printOne()
can be used, but no warnings result if addToList(1)
is used instead of addToList(1.0)
. Great care must be taken to ensure type safety when generics are mixed with non-generic code.
Exceptions
EX1: Raw types must be used in class literals. For example, as List<Integer>.class
is illegal, it is permissible to use the raw type List.class
. [Bloch 2008]
EX2: The instanceof
operator cannot be used with generic types. It is permissible to mix generic and raw code in such cases. [Bloch 2008]
Code Block |
---|
if(o instanceof Set) { // Raw type Set<?> m = (Set<?>) o; // Wildcard type // ... } |
Risk Assessment
Mixing generic and non-generic code may produce unexpected results and exceptional conditions.
Rule | Severity | Likelihood | Remediation Cost | Priority | Level |
---|---|---|---|---|---|
MSC00- J | low | probable | medium | P4 | L3 |
Automated Detection
TODO
Related Vulnerabilities
Search for vulnerabilities resulting from the violation of this rule on the CERT website.
References
Wiki Markup |
---|
\[[Langer 2008|AA. Java References#Langer 08]\] Topic 3, "[Coping with Legacy|http://www.angelikalanger.com/GenericsFAQ/FAQSections/ProgrammingIdioms.html#Topic3]" [[Bloch 2008|AA. Java References#Bloch 08]\] Item 23: "Don't use raw types in new code" [[Bloch 2007|AA. Java References#Bloch 07]\] Generics, 1. "Avoid Raw Types in New Code" \[[Naftalin 2006b|AA. Java References#Naftalin 06b]\] "Principle of Indecent Exposure" [[JLS 2005|AA. Java References#JLS 05]\] 4.8 "Raw types" and 5.1.9 "Unchecked Conversion" |
49. Miscellaneous (MSC) 49. Miscellaneous (MSC) MSC01-J. Do not use insecure or weak cryptographic algorithms