Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

SQL injection vulnerabilities arise in applications where elements of a SQL query originate from an untrusted source.  Without Without precautions, the untrusted data may maliciously alter the query, resulting in information leaks or data modification. The primary means of preventing SQL injection are sanitization and validation, which are typically implemented as parameterized queries and stored procedures.

Suppose a system authenticates users by issuing the following query to a SQL database. If the query returns any results, authentication succeeds; otherwise, otherwise authentication fails.

Code Block
SELECT * FROM db_user WHERE username='<USERNAME>' AND 
                            password='<PASSWORD>'

Suppose an attacker can substitute arbitrary strings for <USERNAME> and <PASSWORD>.  Then In that case, the authentication mechanism can be bypassed by supplying the following <USERNAME> with an arbitrary password.:

Code Block
validuser' OR '1'='1

The authentication routine dynamically constructs the following query.:

Code Block
SELECT * FROM db_user WHERE username='validuser' OR '1'='1' AND password='<PASSWORD>'

If validuser is a valid user name, this SELECT statement yields the validuser record in the table.  The The password is never checked because username='validuser' is true; consequently, the items after the OR are not tested. As long as the components after the OR generate a syntactically correct SQL expression, the attacker is granted the access of validuser.

Similarly, an attacker could supply the following string for <PASSWORD>, with an arbitrary username:

Code Block
' OR '1'='1

Producing producing the following query:

Code Block
SELECT * FROM db_user WHERE username='<USERNAME>' AND password='' OR '1'='1'

'1'='1' always evaluates to true, causing the query to yield every row in the database.  In In this scenario, the attacker would be authenticated without needing a valid username or password.

Noncompliant Code Example

This noncompliant code example shows JDBC code to authenticate a user to a system. The password is passed as a char array, the database connection is created, and then the passwords are hashed.

...

Code Block
bgColor#FFcccc
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;

class Login {
  public Connection getConnection() throws SQLException {
    DriverManager.registerDriver(new
            com.microsoft.sqlserver.jdbc.SQLServerDriver());
    String dbConnection = 
      PropertyManager.getProperty("db.connection");
    // Can hold some value like
    // "jdbc:microsoft:sqlserver://<HOST>:1433,<UID>,<PWD>"
    return DriverManager.getConnection(dbConnection);
  }

  String hashPassword(char[] password) {
    // Create hash of password
  }

  public void doPrivilegedAction(String username, char[] password)
                                 throws SQLException {
    Connection connection = getConnection();
    if (connection == null) {
      // Handle error
    }
    try {
      String pwd = hashPassword(password);

      String sqlString = "SELECT * FROM db_user WHERE username = '" 
                         + username +
                         "' AND password = '" + pwd + "'";
      Statement stmt = connection.createStatement();
      ResultSet rs = stmt.executeQuery(sqlString);

      if (!rs.next()) {
        throw new SecurityException(
          "User name or password incorrect"
        );
      }

      // Authenticated; proceed
    } finally {
      try {
        connection.close();
      } catch (SQLException x) {
        // Forward to handler
      }
    }
  }
}

Noncompliant Code Example (PreparedStatement)

The JDBC library provides an API for building SQL commands that sanitize untrusted data. The java.sql.PreparedStatement class properly escapes input strings, preventing SQL injection when used correctly. This code example modifies the doPrivilegedAction() method to use a PreparedStatement instead of java.sql.Statement. However, the prepared statement still permits a SQL injection attack by incorporating the unsanitized input argument username into the prepared statement.

Code Block
bgColor#FFcccc
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;

class Login {
  public Connection getConnection() throws SQLException {
    DriverManager.registerDriver(new
            com.microsoft.sqlserver.jdbc.SQLServerDriver());
    String dbConnection = 
      PropertyManager.getProperty("db.connection");
    // Can hold some value like
    // "jdbc:microsoft:sqlserver://<HOST>:1433,<UID>,<PWD>"
    return DriverManager.getConnection(dbConnection);
  }

  String hashPassword(char[] password) {
    // Create hash of password
  }

  public void doPrivilegedAction(
    String username, char[] password
  ) throws SQLException {
    Connection connection = getConnection();
    if (connection == null) {
      // Handle error
    }
    try {
      String pwd = hashPassword(password);
      String sqlString = "select * from db_user where username=" + 
        username + " and password =" + pwd;      
      PreparedStatement stmt = connection.prepareStatement(sqlString);

      ResultSet rs = stmt.executeQuery();
      if (!rs.next()) {
        throw new SecurityException("User name or password incorrect");
      }

      // Authenticated; proceed
    } finally {
      try {
        connection.close();
      } catch (SQLException x) {
        // Forward to handler
      }
    }
  }
}

Compliant Solution (PreparedStatement)

This compliant solution uses a parametric query with a ? character as a placeholder for the argument. This code also validates the length of the username argument, preventing an attacker from submitting an arbitrarily long user name.

...

Use the set*() methods of the PreparedStatement class to enforce strong type checking. This technique mitigates the SQL injection vulnerability because the input is properly escaped by automatic entrapment within double quotes. Note that prepared statements must be used even with queries that insert data into the database.

Risk Assessment

Failure to sanitize user input before processing or storing it can result in injection attacks.

Rule

Severity

Likelihood

Remediation Cost

Priority

Level

IDS00-J

High

Probable

Medium

P12

L1

Automated Detection

ToolVersionCheckerDescription
Coverity7.5

SQLI
FB.SQL_PREPARED_STATEMENT_GENERATED_

FB.SQL_NONCONSTANT_STRING_PASSED_TO_EXECUTE

Implemented
Findbugs1.0SQL_NONCONSTANT_STRING_PASSED_TO_EXECUTEImplemented
Fortify1.0

HTTP_Response_Splitting
SQL_Injection__Persistence
SQL_Injection

Implemented
Klocwork 

SV.DATA.BOUND
SV.DATA.DB
SV.HTTP_SPLIT
SV.PATH
SV.PATH.INJ
SV.SQL

Implemented

Related Vulnerabilities

CVE-2008-2370 describes a vulnerability in Apache Tomcat 4.1.0 through 4.1.37, 5.5.0 through 5.5.26, and 6.0.0 through 6.0.16. When a RequestDispatcher is used, Tomcat performs path normalization before removing the query string from the URI, which allows remote attackers to conduct directory traversal attacks and read arbitrary files via a .. (dot dot) in a request parameter.

Related Guidelines

Android Implementation Details

This rule uses Microsoft SQL Server as an example to show a database connection. However, on Android, DatabaseHelper from SQLite is used for a database connection. Because Android apps may receive untrusted data via network connections, the rule is applicable.

Bibliography

...