Regular expressions (regex) are widely used to match strings of text. For example, the POSIX grep
utility supports regular expressions for finding patterns in the specified text. For introductory information on regular expressions, see the Java Tutorials [Tutorials 08]. The java.util.regex
package provides the Pattern
class that encapsulates a compiled representation of a regular expression and the Matcher
class, which is an engine that uses a Pattern
to perform matching operations on a CharSequence
.
Java's powerful regular expression ( regex ) facilities must be protected from misuse. An attacker may supply a malicious input that modifies the original regular expression in such a way that the regex fails to comply with the program's specification. This attack vector, called a regex injection, might affect control flow, cause information leaks, or result in denial-of-service (DoS) vulnerabilities.
...
Untrusted input should be sanitized before use to prevent regex injection. When the user must specify a regex as input, care must be taken to ensure that the original regex cannot be modified without restriction. Whitelisting characters (such as letters and digits) before delivering the user-supplied string to the regex parser is a good input sanitization strategy. A programmer must provide only a very limited subset of regular expression functionality to the user to minimize any chance of misuse.
Regex Injection Example
Suppose a system log file contains messages output by various system processes. Some processes produce public messages and some processes produce sensitive messages marked "private." Here is an example log file:
...
This regex will match any line in the log file, including the private ones.
Noncompliant Code Example
This noncompliant code example searches a log file using search terms from an untrusted user.
...
This code permits an attacker to perform a regex injection.
Compliant Solution (Whitelisting)
This compliant solution sanitizes the search terms at the beginning of the FindLogEntry(),
filtering out nonalphanumeric characters (except space and single quote).
...
This solution prevents regex injection but also restricts search terms. For example, a user may no longer search for "name =
" because nonalphanumeric characters are removed from the search term.
Compliant Solution
Another method of mitigating this vulnerability is to filter out the sensitive information prior to matching. Such a solution would require the filtering to be done every time the log file is periodically refreshed, incurring extra complexity and a performance penalty. Sensitive information may still be exposed if the log format changes but the class is not also refactored to accommodate these changes.
Risk Assessment
Failing to sanitize untrusted data included as part of a regular expression can result in the disclosure of sensitive information.
Rule | Severity | Likelihood | Remediation Cost | Priority | Level |
---|---|---|---|---|---|
IDS08-J | medium | unlikely | medium | P4 | L3 |
Related Guidelines
Bibliography