Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.
Comment: Edited to provide a definition for heap pollution

...

The use of raw types is allowed only as a concession to compatibility of legacy code. The use of raw types in code written after the introduction of genericity into the Java programming language is strongly discouraged. It is possible that future versions of the Java programming language will disallow the use of raw types.

When An attempt by a parameterized type tries to access an object that is not of the parameterized type , heap pollution occursis called heap pollution (see the Java Language Specification, §4.12.2.1, "Heap Pollution," [JLS 2005]). For instance, consider the following code snippet.

Code Block

List l = new ArrayList();
List<String> ls = l; // Produces unchecked warning

...

This noncompliant code example compiles but produces an unchecked warning because the raw type of the List.add() method is used (the list parameter in the addToList() method) rather than the parameterized type.

Code Block
bgColor#FFCCCC

class ListUtility {
  private static void addToList(List list, Object obj) {
    list.add(obj); // unchecked warning
  }

  public static void main(String[] args) {
    List<String> list = new ArrayList<String> ();
    addToList(list, 1);
    System.out.println(list.get(0));
  }
}

...

This compliant solution enforces type safety by changing the addToList() method signature to enforce proper type checking.

Code Block
bgColor#ccccff

class ListUtility {
  private static void addToList(List<String> list, String str) {
    list.add(str);     // No warning generated
  }

  public static void main(String[] args) {
    List<String> list = new ArrayList<String> ();
    addToList(list, "1");
    System.out.println(list.get(0));
  }
}

...

Suppose that the addToList() method was legacy code that could not be changed. The following compliant solution creates a checked view of the list by using the Collections.checkedList() method. This method returns a wrapper collection that performs runtime type checking in its implementation of the add() method before delegating to the backend List<String>. The wrapper collection can be safely passed to the legacy addToList() method.

Code Block
bgColor#ccccff

class ListUtility {
  private static void addToList(List list, Object obj) {
    list.add(obj); // Unchecked warning
  }

  public static void main(String[] args) {
    List<String> list = new ArrayList<String> ();
    List<String> checkedList = Collections.checkedList(list, String.class);
    addToList(checkedList, 1);
    System.out.println(list.get(0));
  }
}

...

This noncompliant code example compiles and runs cleanly because it suppresses the unchecked warning produced by the raw List.add() method. The printOne() method intends to print the value 1, either as an int or as a double depending on the type of the variable type.

Code Block
bgColor#FFCCCC

class ListAdder {
  @SuppressWarnings("unchecked")
  private static void addToList(List list, Object obj) {
    list.add(obj);     // Unchecked warning
  }

  private static <T> void printOne(T type) {
    if (!(type instanceof Integer || type instanceof Double)) {
      System.out.println("Cannot print in the supplied type");
    }
    List<T> list = new ArrayList<T>();
    addToList(list, 1);
    System.out.println(list.get(0));
  }

  public static void main(String[] args) {
    double d = 1;
    int i = 1;
    System.out.println(d);
    ListAdder.printOne(d);
    System.out.println(i);
    ListAdder.printOne(i);
  }
}

However, despite list being correctly parameterized, this method prints 1 and never 1.0 because the int value 1 is always added to list without being type checked. This code produces the following output:

Code Block

1.0
1
1
1

Compliant Solution

This compliant solution generifies the addToList() method, eliminating any possible type violations.

Code Block
bgColor#ccccff

class ListAdder {
  private static <T> void addToList(List<T> list, T t) {
    list.add(t);     // No warning generated
  }

  private static <T> void printOne(T type) {
    if (type instanceof Integer) {
      List<Integer> list = new ArrayList<Integer>();
      addToList(list, 1);
      System.out.println(list.get(0));
    }
    else if (type instanceof Double) {
      List<Double> list = new ArrayList<Double>();

      // This will not compile if addToList(list, 1) is used
      addToList(list, 1.0);

      System.out.println(list.get(0));
    }
    else {
      System.out.println("Cannot print in the supplied type");
    }
  }

  public static void main(String[] args) {
    double d = 1;
    int i = 1;
    System.out.println(d);
    ListAdder.printOne(d);
    System.out.println(i);
    ListAdder.printOne(i);
  }
}

This code compiles cleanly and produces the correct output:

Code Block

1.0
1.0
1
1

If the method addToList() is externally defined (such as in a library or as an upcall method) and cannot be changed, the same compliant method printOne() can be used, but no warnings result if addToList(1) is used instead of addToList(1.0). Great care must be taken to ensure type safety when generics are mixed with nongeneric code.

...

OBJ03-EX1: The instanceof operator cannot be used with generic types. It is permissible to mix generic and raw code in such cases [Bloch 2008].

Code Block

if(o instanceof Set) { // Raw type
  Set<?> m = (Set<?>) o; // Wildcard type
  // ...
}

...

[Bloch 2008]

Item 23. Don't use raw types in new code

[Bloch 2007]

[Bloch 2005]

Puzzle 88. Raw Deal

[Darwin 2004]

8.3, Avoid Casting by Using Generics

[JavaGenerics 2004]

 

[JLS 2005]

Chapter 5, Conversions and Promotions

 

§4.8, Raw Types

 

§5.1.9, Unchecked Conversion

[Langer 2008]

Topic 3, Coping with Legacy

[Naftalin 2006]

Chapter 8, Effective Generics

[Naftalin 2006b]

Principle of Indecent Exposure

[Schildt 2007]

Create a checked collection

 

      04. Object Orientation (OBJ)