...
The notify()
and notifyAll()
methods of package java.lang.Object
are used to wake up a waiting thread (s)or threads, respectively. These methods must be invoked from a thread that holds the same object lock as the waiting thread(s); these methods throw an IllegalMonitorStateException
when invoked from any other thread. The notifyAll()
method wakes up all threads waiting on an object lock and allows threads whose condition predicate is true to resume execution. Furthermore, if all the threads whose condition predicate evaluates to true previously held a specific lock before going into the wait state, only one of them will reacquire the lock upon being notified. Presumably, the other threads will resume waiting. The notify()
method wakes up only one thread, with no guarantee regarding which specific thread is notified. The chosen thread is permitted to resume waiting if its condition predicate is unsatisfied, and ; this often defeats the purpose of the notification.
...
The java.util.concurrent.locks
utilities provide the Condition.signal()
and Condition.signalAll()
methods to awaken threads that are blocked on a Condition.await()
call. Condition
objects are required when using java.util.concurrent.locks.Lock
objects. A Although Lock
object allows objects allow the use of Object.wait()
, Object.notify()
, and Object.notifyAll()
methods, however this is prohibited by rule "LCK03-J. Do not synchronize on the intrinsic locks of high-level concurrency objects". Code that synchronizes using a Lock
object uses one or more Condition
objects associated with the Lock
object rather than using its own intrinsic lock. These objects interact directly with the locking policy enforced by the Lock
object. Consequently, the await()
, signal()
, and signalAll()
methods are used in place of the wait()
, notify()
, and notifyAll()
methods.
...
This noncompliant code example shows a complex multi-step , multistep process being undertaken by several threads. Each thread executes the step identified by the time
field. Each thread waits for the time
field to indicate that it is time to perform the corresponding thread's step. After performing the step, each thread first increments time
and then notifies the thread that is responsible for the next step.
Code Block | ||
---|---|---|
| ||
public final class ProcessStep implements Runnable { private static final Object lock = new Object(); private static int time = 0; private final int step; // Do Perform operations when field time // reaches this value public ProcessStep(int step) { this.step = step; } @Override public void run() { try { synchronized (lock) { while (time != step) { lock.wait(); } // Perform operations time++; lock.notify(); } } catch (InterruptedException ie) { Thread.currentThread().interrupt(); // Reset interrupted status } } public static void main(String[] args) { for (int i = 4; i >= 0; i--) { new Thread(new ProcessStep(i)).start(); } } } |
...
In this compliant solution, each thread completes its step and then calls notifyAll()
to notify the waiting threads. The thread that is ready can then perform its task , while all the threads whose condition predicates are false (loop condition expression is true) promptly resume waiting.
...
Code Block | ||
---|---|---|
| ||
public final class ProcessStep implements Runnable { private static final Object lock = new Object(); private static int time = 0; private final int step; // DoPerform operations when field time reaches this // reaches this value public ProcessStep(int step) { this.step = step; } @Override public void run() { try { synchronized (lock) { while (time != step) { lock.wait(); } // Perform operations time++; lock.notifyAll(); // Use notifyAll() instead of notify() } } catch (InterruptedException ie) { Thread.currentThread().interrupt(); // Reset interrupted status } } } |
...
Code Block | ||
---|---|---|
| ||
public class ProcessStep implements Runnable { private static final Lock lock = new ReentrantLock(); private static final Condition condition = lock.newCondition(); private static int time = 0; private final int step; // DoPerform operations when field time reaches this value public ProcessStep(int step) { this.step = step; } @Override public void run() // reaches this value public ProcessStep(int step) { this.step = step; } @Override public void run() { lock.lock(); try { while (time != step) { condition.await(); } // Perform operations time++; condition.signal(); } catch (InterruptedException ie) { Thread.currentThread().interrupt(); // Reset interrupted status } finally { lock.unlock(); } } public static void main(String[] args) { for (int i = 4; i >= 0; i--) { new Thread(new ProcessStep(i)).start(); } } } |
...
Wiki Markup |
---|
This compliant solution uses the {{signalAll()}} method to notify all waiting threads. Before {{await()}} returns, the current thread reacquires the lock associated with this condition. When the thread returns, it is guaranteed to hold this lock \[[API 2006|AA. Bibliography#API 06]\]. The thread that is ready can perform its task, while all the threads whose condition predicates are false resume waiting. |
...
Code Block | ||
---|---|---|
| ||
public class ProcessStep implements Runnable { private static final Lock lock = new ReentrantLock(); private static final Condition condition = lock.newCondition(); private static int time = 0; private final int step; // DoPerform operations when field time // reaches this value public ProcessStep(int step) { this.step = step; } @Override public void run() { lock.lock(); try { while (time != step) { condition.await(); } // Perform operations time++; condition.signalAll(); } catch (InterruptedException ie) { Thread.currentThread().interrupt(); // Reset interrupted status } finally { lock.unlock(); } } } |
Compliant Solution (Unique Condition
...
per Thread)
This compliant solution assigns each thread its own condition. All the Condition
objects are accessible to all the threads.
Code Block | ||
---|---|---|
| ||
// Declare class as final because its constructor throws an exception public final class ProcessStep implements Runnable { private static final Lock lock = new ReentrantLock(); private static int time = 0; private final int step; // Do operations when field time; private final int step; // Perform operations when field time // reaches this value private static final int MAX_STEPS = 5; private static final Condition[] conditions = new Condition[MAX_STEPS]; public ProcessStep(int step) { if (step <= MAX_STEPS) { this.step = step; conditions[step] = lock.newCondition(); } else { throw new IllegalArgumentException("Too many threads"); } } @Override public void run() { lock.lock(); try { while (time != step) { conditions[step].await(); } // Perform operations time++; if (step + 1 < conditions.length) { conditions[step + 1].signal(); } } catch (InterruptedException ie) { Thread.currentThread().interrupt(); // Reset interrupted status } finally { lock.unlock(); } } public static void main(String[] args) { for (int i = MAX_STEPS - 1; i >= 0; i--) { ProcessStep ps = new ProcessStep(i); new Thread(ps).start(); } } } |
...
Notifying a single thread rather than all waiting threads can pose a threat to violate the liveness property of the system.
...
<ac:structured-macro ac:name="unmigrated-wiki-markup" ac:schema-version="1" ac:macro-id="105e0be58cb1ed6f-c3703eaf-4a814e97-b666b5c3-118c8ee5215041258d8e811b"><ac:plain-text-body><![CDATA[ | [[API 2006 | AA. Bibliography#API 06]] | | ]]></ac:plain-text-body></ac:structured-macro> | |
<ac:structured-macro ac:name="unmigrated-wiki-markup" ac:schema-version="1" ac:macro-id="ecf632c49ebc0469-b2032f05-4f9b4ce1-a9bdb1de-8ce4a00c56d1e27e743aabf2"><ac:plain-text-body><![CDATA[ | [[JLS 2005 | AA. Bibliography#JLS 05]] | [Chapter 17, Threads and Locks | http://java.sun.com/docs/books/jls/third_edition/html/memory.html] | ]]></ac:plain-text-body></ac:structured-macro> |
<ac:structured-macro ac:name="unmigrated-wiki-markup" ac:schema-version="1" ac:macro-id="cb826fbccb2bf979-cf3d07a2-4bf94df5-b78a8c76-4d3b2fa372aff93c7b9dfa56"><ac:plain-text-body><![CDATA[ | [[Goetz 2006 | AA. Bibliography#Goetz 06]] | Section 14.2.4, Notification | ]]></ac:plain-text-body></ac:structured-macro> | |
<ac:structured-macro ac:name="unmigrated-wiki-markup" ac:schema-version="1" ac:macro-id="c2433ae94fae8e39-74473670-4271458e-b4c9a75c-d86acf5936c0ad59db213d6e"><ac:plain-text-body><![CDATA[ | [[Bloch 2001 | AA. Bibliography#Bloch 01]] | Item 50: . Never invoke wait outside a loop | ]]></ac:plain-text-body></ac:structured-macro> |
...