...
- The lock object might be accessible to hostile code that can acquire the lock and hold it indefinitely. We recommend that locks not be accessible outside of their containing package.
- A field referring to a lock object might be A non-final lock is mutable and consequently, unfit for synchronization. When the lock field is modified to refer to a different object, threads that synchronize on the field lose their mutual exclusion rightslock object. This can cause two critical sections of code that expect to lock on the same object to lock on different objects instead.
- Any object that supports the
java.util.concurrent.Lock
interface should not have its intrinsic lock used; as this may cause confusion and inconsistency during maintainance.
Noncompliant Code Example (public
nonfinal lock object)
...
This is because the thread that holds a lock on the nonfinal field object can modify the field's value to reference some other object. This might cause two threads that lock on the same field to actually not lock on the same object, causing them to execute critical sections of code simultaneously.
...
Compliant Solution (private
and final
lock object)
This compliant solution synchronizes using a lock object that is declared as final
.
Code Block | ||
---|---|---|
| ||
private final Integer lock = new Integer(0);
private void doSomething() {
synchronized(lock) { /* ... */ }
}
// setValue() is disallowed
|
Noncompliant Code Example (Boolean
lock object)
Wiki Markup |
---|
This noncompliant code example uses |
Wiki Markup |
This noncompliant code example uses a {{Boolean}} field to synchronize. However, because the field is non-final, there can be two possible valid values ({{true}} and {{false}}, discounting {{null}}) that a {{Boolean}} field canfor assumesynchronization. ConsequentlyHowever, anybecause otherthe codefield that synchronizes on the same value can cause unresponsiveness and deadlocks \[[Findbugs 08|AA. Java References#Findbugs 08]\].is non-final, there can be two possible valid values ({{true}} and {{false}}, discounting {{null}}) that a {{Boolean}} can assume. Consequently, any other code that synchronizes on the same value can cause unresponsiveness and deadlocks \[[Findbugs 08|AA. Java References#Findbugs 08]\]. |
Code Block | ||
---|---|---|
| ||
private Boolean initialized = Boolean.FALSE; synchronized(initialized) { if (!initialized) { // Perform initialization initialized = Boolean.TRUE; } } |
Compliant Solution (private
and final
lock object)
Even if the field were final, the code would use the intrinsic lock of Boolean.FALSE
or Boolean.TRUE
, which are accessible throughout the program. Consequently any other code could lock these objects and cause deadlock.
Noncompliant Code Example (Boxed primitive)
This noncompliant code example locks on a boxed Integer
objectThis compliant solution synchronizes using a lock object that is declared as final
.
Code Block | ||
---|---|---|
| ||
private int lock = 0; final Integer lockLock = lock; new Integer(0); private void doSomething() { synchronized(lock// Boxed primitive Lock will be shared synchronized(Lock) { /* ... */ } } // setValue() is disallowed |
Noncompliant Code Example (Boxed primitive)
This noncompliant code example locks on a non-final boxed Integer
object.
Code Block | ||
---|---|---|
| ||
int lock = 0;
Integer Lock = lock; // Boxed primitive Lock will be shared
synchronized(Lock) { /* ... */ }
|
Boxed types are allowed to use the same instance for a range of integer values and consequently, suffer from the same problems as Boolean
constants. Note that the boxed Integer
primitive is shared and not the Integer
object (new Integer(value)
) itself. In general, holding a lock on any data structure that contains a boxed value is insecure.
Noncompliant Code Example (final String
constant)
This noncompliant code example locks on a final String
literal.
Code Block | ||
---|---|---|
| ||
// This bug was found in jetty-6.1.3 BoundedThreadPool
private final String lock = "one";
synchronized(lock) { /* ... */ }
|
Wiki Markup |
---|
A {{String}} literal is a constant and is interned. According to the Java API \[[API 06|AA. Java References#API 06]\], class {{String}} documentation: |
When the
intern()
method is invoked, if the pool already contains a string equal to thisString
object as determined by theequals(Object)
method, then the string from the pool is returned. Otherwise, thisString
object is added to the pool and a reference to thisString
object is returned.
Consequently, a String
constant behaves like a global variable in the JVM. As demonstrated in this noncompliant code example, even if each instance of an object maintains its own field lock
, the field points to a common String
constant in the JVM. Trusted code that locks on the same String
constant renders all synchronization attempts inadequate. Likewise, hostile code from any other package can exploit this vulnerability.
Noncompliant Code Example (getClass()
lock object)
Synchronizing on return values of the Object.getClass()
method, rather than a class literal can also be counterproductive. Whenever the implementing class is subclassed, the subclass locks on a completely different Class
object (subclass's type).
Code Block | ||
---|---|---|
| ||
synchronized(getClass()) { /* ... */ }
|
Wiki Markup |
---|
Section 4.3.2 "The Class Object" of the Java Language specification \[[JLS 05|AA. Java References#JLS 05]\] describes how method synchronization works: |
A class method that is declared
synchronized
synchronizes on the lock associated with theClass
object of the class.
This does not mean that a subclass locking using getClass()
can only synchronize on the Class
object of the base class. In fact, it will lock on its own Class
object, which may or may not be want the programmer had in mind.
Compliant Solution (class name qualification)
Boxed types are allowed to use the same instance for a range of integer values and consequently, suffer from the same problems as Boolean
constants. Note that the boxed Integer
primitive is shared and not the Integer
object (new Integer(value)
) itself. In general, holding a lock on any data structure that contains a boxed value is insecure.
Noncompliant Code Example (String
constant)
This noncompliant code example locks on a final String
literal.
Code Block | ||
---|---|---|
| ||
// This bug was found in jetty-6.1.3 BoundedThreadPool
private final String lock = "one";
synchronized(lock) { /* ... */ }
|
Wiki Markup |
---|
A {{String}} literal is a constant and is interned. According to the Java API \[[API 06|AA. Java References#API 06]\], class {{String}} documentation: |
When the
intern()
method is invoked, if the pool already contains a string equal to thisString
object as determined by theequals(Object)
method, then the string from the pool is returned. Otherwise, thisString
object is added to the pool and a reference to thisString
object is returned.
Consequently, a String
constant behaves like a global variable in the JVM. As demonstrated in this noncompliant code example, even if each instance of an object maintains its own field lock
, the field points to a common String
constant in the JVM. Trusted code that locks on the same String
constant renders all synchronization attempts inadequate. Likewise, hostile code from any other package can exploit this vulnerability.
Noncompliant Code Example (getClass()
lock object)
Synchronizing on return values of the Object.getClass()
method, rather than a class literal can also be counterproductive. Whenever the implementing class is subclassed, the subclass locks on a completely different Class
object (subclass's type).
Code Block | ||
---|---|---|
| ||
synchronized(getClass()) { /* ... */ }
|
Wiki Markup |
---|
Section 4.3.2 "The Class Object" of the Java Language specification \[[JLS 05|AA. Java References#JLS 05]\] describes how method synchronization works: |
A class method that is declared
synchronized
synchronizes on the lock associated with theClass
object of the class.
This does not mean that a subclass using getClass()
can only synchronize on the Class
object of the base class. In fact, it will lock on its own Class
object, which may or may not be want the programmer had in mind.
Compliant Solution (class name qualification)
Explicitly define the name of the class through name qualification (superclass in this example) in the synchronization block.
Code Block | ||
---|---|---|
| ||
synchronized(SuperclassName.class) {
// ...
}
|
The class object being synchronized must not be accessible to hostile code. If the class is package-private, then external packages may not access the Class object, ensuring its trustworthiness as an intrinsic lock object. For more information, see CON04-J. Use the private lock object idiom instead of the Class object's intrinsic locking mechanism.
Compliant Solution (Class.forName()
)
This compliant solution uses the Class.forName()
method to synchronize on the superclass's Class
objectExplicitly define the name of the class through name qualification (superclass in this example) in the synchronization block.
Code Block | ||
---|---|---|
| ||
synchronized(SuperclassName.classClass.forName("SuperclassName")) { // ... } |
The Again, the class object being synchronized must not be accessible to hostile code. For more information, see CON04-J. Use the private lock object idiom instead of the Class object's intrinsic locking mechanism.
Compliant Solution (2) (Class.forName()
)
This compliant solution uses the Class.forName()
method to synchronize on the superclass's Class
object.
Code Block | ||
---|---|---|
| ||
synchronized(Class.forName("SuperclassName")) {
// ...
}
|
The class object being synchronized must not be accessible to hostile code. For more information, see CON04-J. Use the private lock object idiom instead of the Class object's intrinsic locking mechanism.
Noncompliant Code Example (collection view)
Finally, it is more important to recognize the entities with whom synchronization is required rather than indiscreetly scavenging for variables or objects to synchronize on.
, as discussed in the previous example.
Noncompliant Code Example (nonstatic lock object for static
data)
This noncompliant code example uses a nonstatic lock object to guard access to a static
field. If two Runnable
tasks, each consisting of a thread are started, they will create two instances of the lock object and lock on each separately. This does not prevent either thread from observing an inconsistent value of counter
because the increment operation on volatile
fields is not atomic in the absence of proper synchronization.
Code Block | ||
---|---|---|
| ||
class CountBoxes implements Runnable {
static volatile int counter;
// ...
Object lock = new Object();
public void run() {
synchronized(lock) {
counter++;
// ...
}
}
public static void main(String[] args) {
Runnable r1 = new CountBoxes();
Thread t1 = new Thread(r1);
Runnable r2 = new CountBoxes();
Thread t2 = new Thread(r2);
t1.start();
t2.start();
}
}
|
Noncompliant Code Example (method synchronization for static
data)
This noncompliant code example uses method synchronization to protect access to a static
class member. When using synchronization wrappers, the synchronization object must be the {{Collection}} object. The synchronization is necessary to enforce atomicity ([CON07-J. Do not assume that a grouping of calls to independently atomic methods is atomic]). This noncompliant code example demonstrates inappropriate synchronization resulting from locking on a Collection view instead of the Collection object itself \[[Tutorials 08|AA. Java References#Tutorials 08]\]. Wiki Markup
Code Block | ||
---|---|---|
| ||
Map<Integer, String> m = Collections.synchronizedMap(new HashMap<Integer, String>());
Set<Integer> s = m.keySet();
synchronized(s) { // Incorrectly synchronizes on s
for(Integer k : s) {
// Do something
}
}
|
...
class CountBoxes implements Runnable {
static volatile int counter;
// ...
public synchronized void run() {
counter++;
// ...
}
// ...
}
|
The problem is that this lock is associated with each instance of the class and not with the class object itself. Consequently, threads constructed using different Runnable
instances may observe inconsistent values of the counter
.
Compliant Solution (static
lock object)
This compliant solution correctly synchronizes on declares the Collection
object instead of the Collection
viewlock object as static
and consequently, ensures the atomicity of the increment operation.
Code Block | ||
---|---|---|
| ||
class CountBoxes implements Runnable { static int counter; // ... Map<Integer, String> m = Collections.synchronizedMap(new HashMap<Integer, String>()); synchronized(m) { // Synchronize on m, not s for(Integer k : m) { // Do something } } private static final Object lock = new Object(); public void run() { synchronized(lock) { counter++; // ... } // ... } |
There is no requirement of declaring the counter
variable as volatile
when synchronization is used.
Noncompliant Code Example (ReentrantLock
lock object)
...
Code Block | ||
---|---|---|
| ||
final Lock lock = new ReentrantLock(); lock.lock(); try { // ... } finally { lock.unlock(); } |
Noncompliant Code Example (
...
collection view)
Finally, it is more important to recognize the entities with whom synchronization is required rather than indiscreetly scavenging for variables or objects to synchronize on. This noncompliant code example synchronizes on the view of a synchronized mapThis noncompliant code example uses a nonstatic lock object to guard access to a static
field. If two Runnable
tasks, each consisting of a thread are started, they will create two instances of the lock object and lock on each separately. This does not prevent either thread from observing an inconsistent value of counter
because the increment operation on volatile
fields is not atomic in the absence of proper synchronization.
Code Block | ||
---|---|---|
| ||
classMap<Integer, CountBoxesString> implementsm Runnable { static volatile int counter; // ... Object lock = new Object(); public void run() { synchronized(lock) { counter++; // ... } } public static void main(String[] args) { Runnable r1 = new CountBoxes(); Thread t1 = new Thread(r1); Runnable r2 = new CountBoxes(); Thread t2 = new Thread(r2); t1.start(); t2.start(); } } |
Noncompliant Code Example (method synchronization for static
data)
This noncompliant code example uses method synchronization to protect access to a static
class member.
Code Block | ||
---|---|---|
| ||
class CountBoxes implements Runnable {
static volatile int counter;
// ...
public synchronized void run() {
counter++;
// ...
}
// ...
}
|
The problem is that this lock is associated with each instance of the class and not with the class object itself. Consequently, threads constructed using different Runnable
instances may observe inconsistent values of the counter
.
Compliant Solution (static
lock object)
This compliant solution declares the lock object as static
and consequently, ensures the atomicity of the increment operation.
Code Block | ||
---|---|---|
| ||
class CountBoxes implements Runnable {
static int counter;
// ...
private static final Object lock = new Object();
public void run() {
synchronized(lock) {
counter++;
// ...
}
// ...
}
|
...
= Collections.synchronizedMap(new HashMap<Integer, String>());
Set<Integer> s = m.keySet();
synchronized(s) { // Incorrectly synchronizes on s
for(Integer k : s) {
// Do something
}
}
|
Wiki Markup |
---|
When using synchronization wrappers, the synchronization object must be the {{Collection}} object. The synchronization is necessary to enforce atomicity ([CON07-J. Do not assume that a grouping of calls to independently atomic methods is atomic]). This noncompliant code example demonstrates inappropriate synchronization resulting from locking on a Collection view instead of the Collection object itself \[[Tutorials 08|AA. Java References#Tutorials 08]\]. |
Wiki Markup |
---|
The Collections class documentation \[[API 06|AA. Java References#API 06]\] says: |
It is imperative that the user manually synchronize on the returned map when iterating over any of its collection views... Failure to follow this advice may result in non-deterministic behavior.
Compliant Solution (collection lock object)
This compliant solution correctly synchronizes on the Collection
object instead of the Collection
view.
Code Block | ||
---|---|---|
| ||
// ...
Map<Integer, String> m = Collections.synchronizedMap(new HashMap<Integer, String>());
synchronized(m) { // Synchronize on m, not s
for(Integer k : m) {
// Do something
}
}
|
Risk Assessment
Synchronizing on an incorrect variable can provide a false sense of thread safety and result in nondeterministic behavior.
...
Wiki Markup |
---|
\[[API 06|AA. Java References#API 06]\] Class String, Collections
\[[Pugh 08|AA. Java References#Pugh 08]\] "Synchronization"
\[[Miller 09|AA. Java References#Miller 09]\] Locking
\[[Tutorials 08|AA. Java References#Tutorials 08]\] [Wrapper Implementations|http://java.sun.com/docs/books/tutorial/collections/implementations/wrapper.html] |
...