Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

More information about deprecated methods is available in MET15-J. Do not use deprecated or obsolete methods. Also, refer to EXC09-J. Prevent inadvertent calls to System.exit() or forced shutdown for information on preventing data corruption when the JVM is abruptly shut down.

Noncompliant Code Example (Deprecated Thread.stop())

This noncompliant code example shows a thread that fills a vector with pseudorandom numbers. The thread is forcefully stopped after a given amount of time.

Code Block
bgColor#FFcccc
public final class Container implements Runnable {
  private final Vector<Integer> vector = new Vector<Integer>(1000);

  public Vector<Integer> getVector() {
    return vector;
  }
  
  public synchronized void run() {
    Random number = new Random(123L);
    int i = vector.capacity();
    while (i > 0) {
      vector.add(number.nextInt(100));
      i--;
    }    
  }

  public static void main(String[] args) throws InterruptedException {
    Thread thread = new Thread(new Container());
    thread.start();
    Thread.sleep(5000);
    thread.stop();
  }
}

...

Wiki Markup
However, the {{Thread.stop()}} method causes the thread to stop what it is doing and throw a {{ThreadDeath}} exception. All acquired locks are subsequently released \[[API 06|AA. Java References#API 06]\]. If the thread is in the process of adding a new integer to the vector when it is stopped, the vector may become accessible while it is in an inconsistent state. This can result in {{Vector.size()}} returning an incorrect element count, for example, because the element count is incremented after adding the element.

Compliant Solution (volatile flag)

This compliant solution uses a volatile flag to terminate the thread. An accessor method shutdown() is used to set the flag to true. The thread's run() method polls the done flag, and terminates when it becomes true.

Code Block
bgColor#ccccff
public final class Container implements Runnable {
  private final Vector<Integer> vector = new Vector<Integer>(1000);
  private volatile boolean done = false;
  
  public Vector<Integer> getVector() {
    return vector;
  }
  
  public void shutdown() {
    done = true;
  }

  public synchronized void run() {
    Random number = new Random(123L);
    int i = vector.capacity();
    while (!done && i > 0) {
      vector.add(number.nextInt(100));
      i--;
    }
  }

  public static void main(String[] args) throws InterruptedException {
    Container container = new Container();
    Thread thread = new Thread(container);
    thread.start();
    Thread.sleep(5000);
    container.shutdown();
  }
}

Compliant Solution (Interruptible)

In this compliant solution, Thread.interrupt() is called from main() to terminate the thread. Invoking Thread.interrupt() sets an internal flag known as the interrupt status. The thread polls the interrupt status flag using the Thread.interrupted() method which returns true if the current thread has been interrupted and clears the interrupt status.

Code Block
bgColor#ccccff
public class Container implements Runnable {
  private final Vector<Integer> vector = new Vector<Integer>(1000);
	  
  public Vector<Integer> getVector() {
    return vector;
  }

  public synchronized void run() {
    Random number = new Random(123L);
    int i = vector.capacity();
    while (!Thread.interrupted() && i > 0) {
      vector.add(number.nextInt(100));
      i--;
    }
  }

  public static void main(String[] args) throws InterruptedException {
    Container c = new Container();
    Thread thread = new Thread(c);
    thread.start();
    Thread.sleep(5000);
    thread.interrupt();
  }
}

A thread may use interruption for performing tasks other than cancellation and shutdown. Consequently, a thread should not be interrupted unless its interruption policy is known in advance. Failure to do so can result in failed interruption requests.

Compliant Solution (Runtime Permission stopThread)

Removing the default permission java.lang.RuntimePermission stopThread from the security policy file prevents threads from being stopped using the Thread.stop() method. This approach is not recommended for trusted, custom-developed code that uses the Thread.stop() as the existing design presumably depends upon the ability of the system to perform this action. Furthermore, the system may not be designed to properly handle the resulting exception. In these cases, it is preferable to implement an alternate design approach corresponding to one of other compliant solutions described in this guideline.

Risk Assessment

Forcing a thread to stop can result in inconsistent object state. Critical resources may also leak if clean-up operations are not carried out as required.

Rule

Severity

Likelihood

Remediation Cost

Priority

Level

CON24- J

low

probable

medium

P4

L3

Automated Detection

TODO

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

Wiki Markup
\[[API 06|AA. Java References#API 06]\] Class Thread, method {{stop}}, interface ExecutorService
\[[Sun 99|AA. Java References#Sun 99]\] 
\[[Darwin 04|AA. Java References#Darwin 04]\] 24.3 Stopping a Thread
\[[JDK7 08|AA. Java References#JDK7 08]\] Concurrency Utilities, More information: Java Thread Primitive Deprecation 
\[[JPL 06|AA. Java References#JPL 06]\] 14.12.1. Don't stop and 23.3.3. Shutdown Strategies
\[[JavaThreads 04|AA. Java References#JavaThreads 04]\] 2.4 Two Approaches to Stopping a Thread
\[[Goetz 06|AA. Java References#Goetz 06]\] Chapter 7: Cancellation and shutdown

...