The C Standard identifies the following distinct situations in which undefined behavior (UB) can arise as a result of invalid pointer operations:
UB | Description | Example Code |
---|---|---|
Addition or subtraction of a pointer into, or just beyond, an array object and an integer type produces a result that does not point into, or just beyond, the same array object. |
Improper Scaling,
Addition or subtraction of a pointer into, or just beyond, an array object and an integer type produces a result that points just beyond the array object and is used as the operand of a unary | Dereferencing Past the End Pointer, Using Past the End Index | |
An array subscript is out of range, even if an object is apparently accessible with the given subscript, for example, in the lvalue expression | ||
An attempt is made to access, or generate a pointer to just past, a flexible array member of a structure when the referenced object provides no elements for that array. |
Anchor | ||||
---|---|---|---|---|
|
In this noncompliant code example, the function f()
attempts to validate the index
before using it as an offset to the statically allocated table
of integers. However, the function fails to reject negative index
values. When index
is less than zero, the behavior of the addition expression in the return statement of the function is undefined behavior 46. On some implementations, the addition alone can trigger a hardware trap. On other implementations, the addition may produce a result that when dereferenced triggers a hardware trap. Other implementations still may produce a dereferenceable pointer that points to an object distinct from table
. Using such a pointer to access the object may lead to information exposure or cause the wrong object to be modified.
...
Code Block | ||||
---|---|---|---|---|
| ||||
#include <stddef.h> enum { TABLESIZE = 100 }; static int table[TABLESIZE]; int *f(size_t index) { if (index < TABLESIZE) { return table + index; } return NULL; } |
Anchor | ||||
---|---|---|---|---|
|
This noncompliant code example shows the flawed logic in the Windows Distributed Component Object Model (DCOM) Remote Procedure Call (RPC) interface that was exploited by the W32.Blaster.Worm. The error is that the while
loop in the GetMachineName()
function (used to extract the host name from a longer string) is not sufficiently bounded. When the character array pointed to by pwszTemp
does not contain the backslash character among the first MAX_COMPUTERNAME_LENGTH_FQDN + 1
elements, the final valid iteration of the loop will dereference past the end pointer, resulting in exploitable undefined behavior 47. In this case, the actual exploit allowed the attacker to inject executable code into a running program. Economic damage from the Blaster worm has been estimated to be at least $525 million [Pethia 2003].
...
In this compliant solution, the while
loop in the GetMachineName()
function is bounded so that the loop terminates when a backslash character is found, the null-termination character (L'\0'
) is discovered, or the end of the buffer is reached. Or, as coded, the while loop continues as long as each character is neither a backslash nor a null character and is not at the end of the buffer. This code does not result in a buffer overflow even if no backslash character is found in wszMachineName
.
Code Block | ||||
---|---|---|---|---|
| ||||
HRESULT GetMachineName( wchar_t *pwszPath, wchar_t wszMachineName[MAX_COMPUTERNAME_LENGTH_FQDN+1]) { wchar_t *pwszServerName = wszMachineName; wchar_t *pwszTemp = pwszPath + 2; wchar_t *end_addr = pwszServerName + MAX_COMPUTERNAME_LENGTH_FQDN; while ( (*pwszTemp != L'\\') && && ((*pwszTemp != L'\0')) && && (pwszServerName < end_addr) ) { *pwszServerName++ = *pwszTemp++; } /* ... */ } |
This compliant solution is for illustrative purposes and is not necessarily the solution implemented by Microsoft. This particular solution may not be correct because there is no guarantee that a backslash is found.
Anchor | ||||
---|---|---|---|---|
|
Similar to the dereferencing-past-the-end-pointer error, the function insert_in_table()
in this noncompliant code example uses an otherwise valid index to attempt to store a value in an element just past the end of an array.
...
Code Block | ||||
---|---|---|---|---|
| ||||
#include <stdint.h> #include <stdlib.h> static int *table = NULL; static size_t size = 0; int insert_in_table(size_t pos, int value) { if (size <= pos) { if ((SIZE_MAX - 1 < pos) || ((pos + 1) > SIZE_MAX / sizeof(*table))) { return -1; } int *tmp = (int *)realloc(table, sizeof(*table) * (pos + 1)); if (tmp == NULL) { return -1; } /* Modify size only after realloc() succeeds */ size = pos + 1; table = tmp; } table[pos] = value; return 0; } |
Anchor | ||||
---|---|---|---|---|
|
This noncompliant code example declares matrix
to consist of 7 rows and 5 columns in row-major order. The function init_matrix
iterates over all 35 elements in an attempt to initialize each to the value given by the function argument x
. However, because multidimensional arrays are declared in C in row-major order, the function iterates over the elements in column-major order, and when the value of j
reaches the value COLS
during the first iteration of the outer loop, the function attempts to access element matrix[0][5]
. Because the type of matrix
is int[7][5]
, the j
subscript is out of range, and the access has undefined behavior 49.
...
Code Block | ||||
---|---|---|---|---|
| ||||
#include <stddef.h> #define COLS 5 #define ROWS 7 static int matrix[ROWS][COLS]; void init_matrix(int x) { for (size_t i = 0; i < ROWS; i++) { for (size_t j = 0; j < COLS; j++) { matrix[i][j] = x; } } } |
Anchor | ||||
---|---|---|---|---|
|
In this noncompliant code example, the function find()
attempts to iterate over the elements of the flexible array member buf
, starting with the second element. However, because function g()
does not allocate any storage for the member, the expression first++
in find()
attempts to form a pointer just past the end of buf
when there are no elements. This attempt is undefined behavior 62. (see See MSC21-C. Use robust loop termination conditions for more information.).
Code Block | ||||
---|---|---|---|---|
| ||||
#include <stdlib.h>
struct S {
size_t len;
char buf[]; /* Flexible array member */
};
const char *find(const struct S *s, int c) {
const char *first = s->buf;
const char *last = s->buf + s->len;
while (first++ != last) { /* Undefined behavior */
if (*first == (unsigned char)c) {
return first;
}
}
return NULL;
}
void g(void) {
struct S *s = (struct S *)malloc(sizeof(struct S));
if (s == NULL) {
/* Handle error */
}
s->len = 0;
find(s, 'a');
} |
...
Code Block | ||||
---|---|---|---|---|
| ||||
#include <stdlib.h>
struct S {
size_t len;
char buf[]; /* Flexible array member */
};
const char *find(const struct S *s, int c) {
const char *first = s->buf;
const char *last = s->buf + s->len;
while (first != last) { /* Avoid incrementing here */
if (*++first == (unsigned char)c) {
return first;
}
}
return NULL;
}
void g(void) {
struct S *s = (struct S *)malloc(sizeof(struct S));
if (s == NULL) {
/* Handle error */
}
s->len = 0;
find(s, 'a');
} |
Anchor | ||||
---|---|---|---|---|
|
This noncompliant code example is similar to an Adobe Flash Player vulnerability that was first exploited in 2008. This code allocates a block of memory , and initializes it with some data. The data does not belong at the beginning of the block, which is left uninitialized. Instead, it is placed offset
bytes within the block. The function ensures that the data fits within the allocated block.
...
Writing to out-of-range pointers or array subscripts can result in a buffer overflow and the execution of arbitrary code with the permissions of the vulnerable process. Reading from out-of-range pointers or array subscripts can result in unintended information disclosure.
Rule | Severity | Likelihood | Remediation Cost | Priority | Level |
---|---|---|---|---|---|
ARR30-C | High | Likely | High | P9 | L2 |
Automated Detection
Tool | Version | Checker | Description |
---|
Astrée |
|
|
|
LANG.MEM.BO
LANG.MEM.BU
LANG.MEM.TO
LANG.MEM.TU
LANG.STRUCT.PBB
LANG.STRUCT.PPE
BADFUNC.BO.*
Buffer overrun
Buffer underrun
Type overrun
Type underrun
Pointer before beginning of object
Pointer past end of object
A collection of warning classes that report uses of library functions prone to internal buffer overflows.
Could be configured to catch violations of this rule. The way to catch the noncompliant code example is to first hunt for example code that follows this pattern:
for (LPWSTR pwszTemp = pwszPath + 2; *pwszTemp != L'\\';
*pwszTemp++;)
In particular, the iteration variable is a pointer, it gets incremented, and the loop condition does not set an upper bound on the pointer. Once this case is handled, ROSE can handle cases like the real noncompliant code example, which is effectively the same semantics, just different syntax
ARRAY_VS_SINGLETON
NEGATIVE_RETURNS
OVERRUN_STATIC
OVERRUN_DYNAMIC
Can detect the access of memory past the end of a memory buffer/array
Can detect when the loop bound may become negative
Can detect the out-of-bound read/write to array allocated statically or dynamically
ABV.ITERATOR SV.TAINTED.LOOP_BOUND
45 D, 47 S, 476 S, 489 S, 64 X, 66 X, 68 X, 69 X, 70 X, 71 X, 79 X
2840, 2841, 2842, 2843, 2844, 2930, 2931, 2932, 2933, 2934, 2950, 2951, 2952, 2953
Context sensitive analysis of array index, pointers, etc.
Array index out of bounds
Buffer overflow when calling various functions memset,strcpy,..
Warns about condition (a[i] == 0 && i < unknown_value) and recommends that (i < unknown_value && a[i] == 0) is used instead
Detects unsafe code when array is accessed before/after it is tested if the array index is out of bounds
Related Vulnerabilities
CVE-2008-1517 results from a violation of this rule. Before Mac OSX version 10.5.7, the XNU kernel accessed an array at an unverified user-input index, allowing an attacker to execute arbitrary code by passing an index greater than the length of the array and therefore accessing outside memory [xorl 2009].
Search for vulnerabilities resulting from the violation of this rule on the CERT website.
Related Guidelines
ISO/IEC TR 24772:2013 | Arithmetic Wrap-around Error [FIF] Unchecked Array Indexing [XYZ] |
ISO/IEC TS 17961 | Forming or using out-of-bounds pointers or array subscripts [invptr] |
MITRE CWE | CWE-119, Improper Restriction of Operations within the Bounds of a Memory Buffer |
MISRA C:2012 | Rule 18.1 (required) |
Bibliography
array-index-range | Partially checked Can detect all accesses to invalid pointers as well as array index out-of-bounds accesses and prove their absence. This rule is only partially checked as invalid but unused pointers may not be reported. | ||||||||
Axivion Bauhaus Suite |
| CertC-ARR30 | Can detect out-of-bound access to array / buffer | ||||||
CodeSonar |
| LANG.MEM.BO | Buffer overrun | ||||||
Compass/ROSE | Could be configured to catch violations of this rule. The way to catch the noncompliant code example is to first hunt for example code that follows this pattern: for (LPWSTR pwszTemp = pwszPath + 2; *pwszTemp != L'\\'; In particular, the iteration variable is a pointer, it gets incremented, and the loop condition does not set an upper bound on the pointer. Once this case is handled, ROSE can handle cases like the real noncompliant code example, which is effectively the same semantics, just different syntax | ||||||||
| OVERRUN NEGATIVE_RETURNS ARRAY_VS_SINGLETON BUFFER_SIZE | Can detect the access of memory past the end of a memory buffer/array Can detect when the loop bound may become negative Can detect the out-of-bound read/write to array allocated statically or dynamically Can detect buffer overflows | |||||||
Cppcheck |
| arrayIndexOutOfBounds, outOfBounds, negativeIndex, arrayIndexThenCheck, arrayIndexOutOfBoundsCond, possibleBufferAccessOutOfBounds | Context sensitive analysis of array index, pointers, etc. Array index out of bounds Buffer overflow when calling various functions memset,strcpy,.. Warns about condition (a[i] == 0 && i < unknown_value) and recommends that (i < unknown_value && a[i] == 0) is used instead Detects unsafe code when array is accessed before/after it is tested if the array index is out of bounds | ||||||
Cppcheck Premium |
| arrayIndexOutOfBounds, outOfBounds, negativeIndex, arrayIndexThenCheck, arrayIndexOutOfBoundsCond, possibleBufferAccessOutOfBounds premium-cert-arr30-c | Context sensitive analysis of array index, pointers, etc. Array index out of bounds Buffer overflow when calling various functions memset,strcpy,.. Warns about condition (a[i] == 0 && i < unknown_value) and recommends that (i < unknown_value && a[i] == 0) is used instead Detects unsafe code when array is accessed before/after it is tested if the array index is out of bounds | ||||||
Helix QAC |
| C2840 DF2820, DF2821, DF2822, DF2823, DF2840, DF2841, DF2842, DF2843, DF2930, DF2931, DF2932, DF2933, DF2935, DF2936, DF2937, DF2938, DF2950, DF2951, DF2952, DF2953 | |||||||
Klocwork |
| ABV.GENERAL | |||||||
LDRA tool suite |
| 45 D, 47 S, 476 S, 489 S, 64 X, 66 X, 68 X, 69 X, 70 X, 71 X, 79 X | Partially implemented | ||||||
Parasoft C/C++test |
| CERT_C-ARR30-a | Avoid accessing arrays out of bounds | ||||||
Parasoft Insure++ | Runtime analysis | ||||||||
PC-lint Plus |
| 413, 415, 416, 613, 661, 662, 676 | Fully supported | ||||||
Polyspace Bug Finder |
| Checks for:
Rule partially covered. | |||||||
PVS-Studio |
| V512, V557, V582, V594, V643, V645, V694, V1086 | |||||||
RuleChecker |
| array-index-range-constant return-reference-local | Partially checked | ||||||
TrustInSoft Analyzer |
| index_in_address | Exhaustively verified (see one compliant and one non-compliant example). |
Related Vulnerabilities
CVE-2008-1517 results from a violation of this rule. Before Mac OSX version 10.5.7, the XNU kernel accessed an array at an unverified user-input index, allowing an attacker to execute arbitrary code by passing an index greater than the length of the array and therefore accessing outside memory [xorl 2009].
Search for vulnerabilities resulting from the violation of this rule on the CERT website.
Related Guidelines
Key here (explains table format and definitions)
Taxonomy | Taxonomy item | Relationship |
---|---|---|
ISO/IEC TR 24772:2013 | Arithmetic Wrap-Around Error [FIF] | Prior to 2018-01-12: CERT: Unspecified Relationship |
ISO/IEC TR 24772:2013 | Unchecked Array Indexing [XYZ] | Prior to 2018-01-12: CERT: Unspecified Relationship |
ISO/IEC TS 17961 | Forming or using out-of-bounds pointers or array subscripts [invptr] | Prior to 2018-01-12: CERT: Unspecified Relationship |
CWE 2.11 | CWE-119, Improper Restriction of Operations within the Bounds of a Memory Buffer | 2017-05-18: CERT: Rule subset of CWE |
CWE 2.11 | CWE-123, Write-what-where Condition | 2017-05-18: CERT: Partial overlap |
CWE 2.11 | CWE-125, Out-of-bounds Read | 2017-05-18: CERT: Partial overlap |
MISRA C:2012 | Rule 18.1 (required) | Prior to 2018-01-12: CERT: Unspecified Relationship |
CERT-CWE Mapping Notes
Key here for mapping notes
CWE-119 and ARR30-C
Independent( ARR30-C, ARR38-C, ARR32-C, INT30-C, INT31-C, EXP39-C, EXP33-C, FIO37-C)
STR31-C = Subset( Union( ARR30-C, ARR38-C))
STR32-C = Subset( ARR38-C)
CWE-119 = Union( ARR30-C, ARR38-C)
Intersection( ARR30-C, ARR38-C) = Ø
CWE-394 and ARR30-C
Intersection( ARR30-C, CWE-394) = Ø
CWE-394 deals with potentially-invalid function return values. Which may be used as an (invalid) array index, but validating the return value is a separate operation.
CWE-125 and ARR30-C
Independent( ARR30-C, ARR38-C, EXP39-C, INT30-C)
STR31-C = Subset( Union( ARR30-C, ARR38-C))
STR32-C = Subset( ARR38-C)
CWE-125 = Subset( CWE-119) = Union( ARR30-C, ARR38-C)
Intersection( ARR30-C, CWE-125) =
- Reading from an out-of-bounds array index, or off the end of an array
ARR30-C – CWE-125 =
- Writing to an out-of-bounds array index, or off the end of an array
CWE-125 – ARR30-C =
- Reading beyond a non-array buffer
- Using a library function to achieve an out-of-bounds read.
CWE-123 and ARR30-C
Independent(ARR30-C, ARR38-C)
STR31-C = Subset( Union( ARR30-C, ARR38-C))
STR32-C = Subset( ARR38-C)
Intersection( CWE-123, ARR30-C) =
- Write of arbitrary value to arbitrary (probably invalid) array index
ARR30-C – CWE-123 =
- Read of value from arbitrary (probably invalid) array index
- Construction of invalid index (pointer arithmetic)
CWE-123 – ARR30-C =
- Arbitrary writes that do not involve directly constructing an invalid array index
CWE-129 and ARR30-C
Independent( ARR30-C, ARR32-C, INT31-C, INT32-C)
ARR30-C = Union( CWE-129, list), where list =
- Dereferencing an out-of-bounds array index, where index is a trusted value
- Forming an out-of-bounds array index, without dereferencing it, whether or not index is a trusted value. (This excludes the array’s TOOFAR index, which is one past the final element; this behavior is well-defined in C11.)
CWE-120 and ARR30-C
See CWE-120 and MEM35-C
CWE-122 and ARR30-C
Intersection( ARR30-C, CWE-122) = Ø
CWE-122 specifically addresses buffer overflows on the heap operations, which occur in the context of string-copying. ARR30 specifically addresses improper creation or references of array indices. Which might happen as part of a heap buffer overflow, but is on a lower programming level.
CWE-20 and ARR30-C
See CWE-20 and ERR34-C
CWE-687 and ARR30-C
Intersection( CWE-687, ARR30-C) = Ø
ARR30-C is about invalid array indices which are created through pointer arithmetic, and dereferenced through an operator (* or []). Neither involve function calls, thus CWE-687 does not apply.
CWE-786 and ARR30-C
ARR30-C = Union( CWE-786, list) where list =
- Access of memory location after end of buffer
- Construction of invalid arry reference (pointer). This does not include an out-of-bounds array index (an integer).
CWE-789 and ARR30-C
Intersection( CWE-789, ARR30-C) = Ø
CWE-789 is about allocating memory, not array subscripting
Bibliography
[Finlay 2003] | |
[Microsoft 2003] | |
[Pethia 2003] |
[Seacord 2013b] | Chapter 1, "Running with Scissors" |
[Viega 2005] | Section 5.2.13, "Unchecked Array Indexing" |
[xorl 2009 ] | "CVE-2008-1517: Apple Mac OS X (XNU) Missing Array Index Validation" |
...
...