...
In this noncompliant code example, integer values returned by parseint(getdata())
are stored into an array of INTBUFSIZE
elements of type int
called buf
[Dowd 2006]. If data is available for insertion into buf
(which is indicated by havedata()
) and buf_ptr
has not been incremented past buf + sizeof(buf)
, an integer value is stored at the address referenced by buf_ptr
. However, the sizeof
operator returns the total number of bytes in buf
, which is typically a multiple of the number of elements in buf
. This value is scaled to the size of an integer and added to buf
. As a result, the check to make sure integers are not written past the end of buf
is incorrect, and a buffer overflow is possible.
Code Block | ||||
---|---|---|---|---|
| ||||
int buf[INTBUFSIZE];
int *buf_ptr = buf;
while (havedata() && buf_ptr < (buf + sizeof(buf))) {
*buf_ptr++ = parseint(getdata());
}
|
...
In this compliant solution, the size of buf
, INTBUFSIZE
, is added directly to buf
and used as an upper bound. The integer literal INTBUFSIZE
is scaled to the size of an integer, and the upper bound of buf
is checked correctly.
...
Code Block | ||||
---|---|---|---|---|
| ||||
int buf[INTBUFSIZE];
int *buf_ptr = buf;
while (havedata() && buf_ptr < &buf[INTBUFSIZE]) {
*buf_ptr++ = parseint(getdata());
}
|
This solution works because the C standard guarantees Standard guarantees the address of buf[INTBUFSIZE]
even though no such element exists.
Noncompliant Code Example
The following This noncompliant code example is based on a flaw in the OpenBSD operating system. An integer, skip
, is added as an offset to a pointer of type struct big
. The adjusted pointer is then used as a destination address in a call to memset()
. However, when skip
is added to the struct big
pointer, it is automatically scaled by the size of struct big
, which is 32 bytes (assuming 4-byte integers, 8-byte long long
integers, and no structure padding). This scaling results in the call to memset()
writing to unintended memory.
Code Block | ||||
---|---|---|---|---|
| ||||
struct big { unsigned long long ull_1; /* typicallyTypically 8 bytes */ unsigned long long ull_2; /* typicallyTypically 8 bytes */ unsigned long long ull_3; /* typicallyTypically 8 bytes */ int si_4; /* typicallyTypically 4 bytes */ int si_5; /* typicallyTypically 4 bytes */ }; /* ... */ int f(void) { size_t skip = offsetof(struct big, ull_2); struct big *s = (struct big *)malloc(sizeof(struct big)); if (!s) { return -1; /* HandleIndicate malloc() errorfailure */ } memset(s + skip, 0, sizeof(struct big) - skip); /* ... */ free(s); s = NULL; return 0; } |
A similar situation occurred in OpenBSD's make
command [Murenin 2007].
...
To correct this example, the struct big
pointer is cast as a char *
. This , which causes skip
to be scaled by a factor of 1.:
Code Block | ||||
---|---|---|---|---|
| ||||
struct big { unsigned long long ull_1; /* typicallyTypically 8 bytes */ unsigned long long ull_2; /* typicallyTypically 8 bytes */ unsigned long long ull_3; /* typicallyTypically 8 bytes */ int si_4; /* typicallyTypically 4 bytes */ int si_5; /* typicallyTypically 4 bytes */ }; /* ... */ int f(void) { size_t skip = offsetof(struct big, ull_2); struct big *s = (struct big *)malloc(sizeof(struct big)); if (!s) { return -1; /* HandleIndicate malloc() errorfailure */ } memset((char *)s + skip, 0, sizeof(struct big) - skip); /* ... */ free(s); s = NULL; return 0; } |
Risk Assessment
Failure to understand and properly use pointer arithmetic can allow an attacker to execute arbitrary code.
Recommendation | Severity | Likelihood | Remediation Cost | Priority | Level |
---|---|---|---|---|---|
EXP08-C |
High |
Probable |
High | P6 | L2 |
Automated Detection
Tool | Version | Checker | Description | ||||||
---|---|---|---|---|---|---|---|---|---|
Astrée |
| Supported: Astrée reports potential runtime errors resulting from invalid pointer arithmetics. | |||||||
CodeSonar |
| LANG.STRUCT.PARITH | Pointer arithmetic | ||||||
Helix QAC |
| C0488, C2930, C2931, C2932, C2933 | |||||||
Klocwork |
| ABV.ITERATOR ABV.GENERAL ABV.GENERAL.MULTIDIMENSION | |||||||
LDRA tool suite |
| 45 D | Partially implemented | ||||||
Parasoft C/C++test |
| CERT_C-EXP08-a | Pointer arithmetic should not be used | ||||||
Parasoft Insure++ | Runtime analysis | ||||||||
PC-lint Plus |
| 416 | Partially supported | ||||||
Polyspace Bug Finder |
| Checks for:
Rec. fully supported. | |||||||
PVS-Studio |
| V503, V520, V574, V600, V613, V619, V620, V643, V650, V687, V769, V1004 |
How long is 4 yards plus 3 feet? It is obvious from elementary arithmetic that any answer involving 7 is wrong, as the student did not take the units into account. The right method is to convert both numbers to reflect the same units.
...
Related Vulnerabilities
Search for vulnerabilities resulting from the violation of this rule on the CERT website.
Related Guidelines
...
...
...
24772:2013 | Pointer Casting and Pointer Type Changes [HFC] Pointer Arithmetic [RVG] |
ISO/IEC TS 17961 | Forming or using out-of-bounds pointers or array subscripts [invptr] |
MISRA C:2012 | Rule 18.1 (required) Rule 18.2 (required) Rule 18.3 (required) Rule 18.4 (advisory) |
MITRE CWE | CWE-468, Incorrect pointer scaling |
ISO/IEC PDTR 24772 "HFC Pointer casting and pointer type changes" and "RVG Pointer arithmetic"
MISRA Rules 17.1–17.4
...
Bibliography
[Dowd 2006] | Chapter 6, "C Language Issues" |
[Murenin 2007] |
...