Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.
Comment: Updated references from C11->C23

Subclause The C Standard, 7.12.1 of the C Standard [ISO/IEC 9899:20112024], defines three types of errors that relate specifically to math functions in math.h: <math.h>.  Paragraph 2 states

A domain error occurs if an input argument is outside the domain over which the mathematical function is defined.

Paragraph 3 states

A pole error (also known as a singularity or infinitary) occurs if the mathematical function has an exact infinite result as the finite input argument(s) are approached in the limit.

Paragraph 4 states

arange error occurs if and only if the mathematical result of the function cannot be represented in an object of the specified type, due to extreme magnitude.result overflows or underflows

...

...

...

...

Domain Programmers can prevent domain and pole errors can be prevented by carefully bounds-checking the arguments before calling mathematical functions and taking alternative action if the bounds are violated.

...

The following table lists the double forms of standard mathematical functions, along with checks that should be performed to ensure a proper input domain, and indicates whether they can also result in range or pole errors, as reported by the C Standard. Both float and long double forms of these functions also exist but are omitted from the table for brevity. If a function has a specific domain over which it is defined, the programmer should must check its input values, and if a function throws range errors, the programmer should detect whether a range error occurs. The programmer must also check for range errors where they might occur. The standard math functions not listed in this table, such as atanfabs(), have no domain restrictions and cannot result in range or pole errors.

Function

Domain

Range

Pole 

acos

(x), asin

(x)

-1 <= x && x <= 1

No

No
atan2
asin(
y,
x)
x != 0 
-1 <= x &&
y !
x <=
0
1
No
YesNo
acosh
atan(x)

x >= 1

No
NoneYesNo
atanh

atan2(y, x)

-

None

No

No

acosh(x)

x >= 1

Yes

No
asinh(x)NoneYesNo

atanh(x)

-1 < x && x < 1

No

Yes

Yes

cosh(x), sinh(x)

None

Yes

No

exp(x), exp2(x), expm1(x)

None

Yes

No

ldexp(x, exp)

None

Yes

No

log(x), log10(x), log2(x)

x >= 0

No

Yes

log1p(x)

x >= -1

No

Yes

ilogb(x)

x != 0 && !isinf(x) && !isnan(x)

Yes

No
logb(x)x != 0Yes Yes

scalbn(x, n), scalbln(x, n)

None

Yes

No

hypot(x, y)

None

Yes

No

pow(x,y)

x > 0 || (x == 0 && y > 0) ||
(x < 0 && y is an integer)

Yes

Yes

sqrt(x)

x >= 0

No

No
erf(x)NoneYesNo

erfc(x)

None

Yes

No

lgamma(x), tgamma(x)

x != 0 &&


! (x < 0 && x is an integer)

Yes

Yes

lrint(x), lround(x)

None

Yes

No

fmod(x, y), remainder(x, y),
remquo(x, y, quo)

y != 0

No

Yes

No

nextafter(x, y),
nexttoward(x, y)

None

Yes

No

fdim(x,y)

None

Yes

No 

fma(x,y,z)

None

Yes

No

Domain and Pole Checking

The most reliable way to handle domain and pole errors is to prevent them by checking arguments beforehand, as in the following templateexemplar:

Code Block
ifdouble safe_sqrt(/* Arguments that will cause a domain or pole error */) {
double x) {
  if (x < 0) {
    fprintf(stderr, "sqrt requires a nonnegative argument");
    /* Handle domain or/ pole error */
} else {}
  /*return Perform computation */sqrt (x);
}

Range Checking

Range errors cannot usually be preventedProgrammers usually cannot prevent range errors, so the most reliable way to handle range errors them is to detect when they have occurred and act accordingly.

The exact treatment of error conditions from math functions is quite complicated. Subclause tedious. The C Standard, 7.12.1 paragraph 5 of the C Standard paragraph 5 [ISO/IEC 9899:20112024], defines the following behavior for floating-point overflow:

A floating result overflows if the magnitude of the mathematical result is finite but so large that the mathematical result cannot be represented without extraordinary roundoff error in an object of the specified typea finite result value with ordinary accuracy would have magnitude (absolute value) too large for the representation with full precision in the specified type. A result that is exactly an infinity does not overflow. If a floating result overflows and default rounding is in effect, then the function returns the value of the macro HUGE_VAL, HUGE_VALF, or HUGE_VALL according to the return type, with the same sign as the correct value of the function; if the integer expression math_errhandling & MATH_ERRNO is nonzero, the integer expression errno acquires the value ERANGE; if the however, for the types with reduced-precision representations of numbers beyond the overflow threshold, the function may return a representation of the result with less than full precision for the type. If a floating resultoverflowsanddefaultroundingisineffectandtheintegerexpressionmath_errhandling & MATH_ERRNO is nonzero, then the integer expression errno acquires the value ERANGE. If a floating result overflows, and the integer expression math_errhandling & MATH_ERREXCEPT is nonzero, the ‘‘overflow’’ the "overflow" floating-point exception is raised (regardless of whether default rounding is in effect).

It is best preferable not to check for errors by comparing the returned value against HUGE_VAL or 0 for several reasons:

  • These are, in general, valid (albeit unlikely) data values.
  • Making such tests requires detailed knowledge of the various error returns for each math function.
  • There are three different possibilities, -Multiple results aside from HUGE_VAL, and 0 are possible, and HUGE_VAL, and you programmers must know which are possible in each case.
  • Different versions of the library have differed varied in their error-return behavior.

It is also difficult can be unreliable to check for math errors using errno because an implementation might not set it errno. For real functions, the programmer can tell whether determines if the implementation sets errno by checking whether math_errhandling & MATH_ERRNO is nonzero. For complex functions, the  

The C Standard, subclause 7.3.2, paragraph 1 , simply states that "an [ISO/IEC 9899:2024],  states:

 an implementation may set errno but is not required to

...

.

The obsolete System V Interface Definition (SVID3) [UNIX 1992] provides more control over the treatment of errors in the math library. The user programmer can provide define a function named matherr() that is invoked if errors occur in a math function. This function can print diagnostics, terminate the execution, or specify the desired return value. The matherr() function has not been adopted by C or POSIX, so its use it is not generally portable.

...

Code Block
#include <math.h>
#if defined(math_errhandling) \
  && (math_errhandling & MATH_ERREXCEPT)#include <fenv.h>
#include <fenv<errno.h>
#endif
 
/* ... */

#if defined(math_errhandling) \
  &&/* Use to call a math function and check errors */
{
  #pragma STDC FENV_ACCESS ON

  if (math_errhandling & MATH_ERREXCEPT) {
    feclearexcept(FE_ALL_EXCEPT);
#endif  }
  errno = 0;

  /* Call the math function */

#if !defined  if ((math_errhandling) \
  || (math_errhandling & MATH_ERRNO)
if (& MATH_ERRNO) && errno != 0) {
    /* Handle range error */
}
#endif
#if defined(math_errhandling) \
  &&  } else if ((math_errhandling & MATH_ERREXCEPT)
if (fetestexcept(FE_INVALID &&
              fetestexcept(FE_INVALID | FE_DIVBYZERO |
               | FE_OVERFLOW
              FE_OVERFLOW | FE_UNDERFLOW) != 0) {
    /* Handle range error */
  }
#endif}

See FLP03-C. Detect and handle floating-point errors for more details on how to detect floating-point errors. AnchorSqrtSqrt

Noncompliant Code Example (sqrt())

The following noncompliant code determines the square root of x:

Code Block
bgColor#FFcccc
langc
#include <math.h>
 
void func(double x) {
  double result;
  result = sqrt(x);
}

However, this code may produce a domain error if x is negative.

Compliant Solution (sqrt())

Because this function has domain errors but no range errors, bounds checking can be used to prevent domain errors:

Code Block
bgColor#ccccff
langc
#include <math.h>
 
void func(double x) {
  double result;

  if (isless(x, 0.0)) {
    /* Handle domain error */
  }

  result = sqrt(x);
}

...

Subnormal Numbers

A subnormal number is a nonzero number that does not use all of its precision bits [IEEE 754 2006]. These numbers can be used to represent values that are closer to 0 than the smallest normal number (one that uses all of its precision bits). However, the asin(), asinh(), atan(), atanh(), and erf() functions may produce range errors, specifically when passed a subnormal number. When evaluated with a subnormal number, these functions can produce an inexact, subnormal value, which is an underflow error.

The C Standard, 7.12.1, paragraph 6 [ISO/IEC 9899:2024], defines the following behavior for floating-point underflow:

The result underflows if a nonzero result value with ordinary accuracy would have magnitude (absolute value) less than the minimum normalized number in the type; however a zero result that is specified to be an exact zero does not underflow. Also, a result with ordinary accuracy and the magnitude of the minimum normalized number may underflow.269) If the result underflows, the function returns an implementation-defined value whose magnitude is no greater than the smallest normalized positive number in the specified type; if the integer expression math_errhandling & MATH_ERRNO is nonzero, whether errno acquires the value ERANGE is implementation-defined; if the integer expression math_errhandling & MATH_ERREXCEPT s nonzero, whether the"underflow" floating-point exception is raised is implementation-defined. 

Implementations that support floating-point arithmetic but do not support subnormal numbers, such as IBM S/360 hex floating-point or nonconforming IEEE-754 implementations that skip subnormals (or support them by flushing them to zero), can return a range error when calling one of the following families of functions with the following arguments:

  • fmod((min+subnorm), min)
  • remainder((min+subnorm), min)
  • remquo((min+subnorm), min, quo)

where min is the minimum value for the corresponding floating point type and subnorm is a subnormal value.

If Annex F is supported and subnormal results are supported, the returned value is exact and a range error cannot occur. The C Standard, F.10.7.1 paragraph 2 [ISO/IEC 9899:2024], specifies the following for the fmod(), remainder(), and remquo() functions:

When subnormal results are supported, the returned value is exact and is independent of the current rounding direction mode.

Annex F, subclause F.10.7.2, paragraph 2, and subclause F.10.7.3, paragraph 2, of the C Standard identify when subnormal results are supported.

Noncompliant Code Example (sqrt())

This noncompliant code example determines the square root of x:

Code Block
bgColor#FFcccc
langc
#include <math.h>
 
void func(double x) {
  double result;
  result = sqrt(x);
}

However, this code may produce a domain error if x is negative.

Compliant Solution (sqrt())

Because this function has domain errors but no range errors, bounds checking can be used to prevent domain errors:

Code Block
bgColor#ccccff
langc
#include <math.h>
 
void func(double x) {
  double result;

  if (isless(x, 0.0)

...

Noncompliant Code Example (cosh(), sinh(), Range Errors)

This noncompliant code example determines the hyperbolic cosine of x:

Code Block
bgColor#FFcccc
langc
#include <math.h>
 
void func(double x) {
  double result;
  result = sinh(x);
}

This code may produce a range error if x has a very large magnitude.

Compliant Solution (cosh(), sinh(), Range Errors)

Because this function has no domain errors but may have range errors, the programmer must detect a range error and act accordingly:

Code Block
bgColor#ccccff
langc
#include <errno.h>
#include <math.h>

#if defined(math_errhandling) \
  && (math_errhandling & MATH_ERREXCEPT)
#include <fenv.h>
#endif
void func(double x) { 
  double result;
  result = sinh(x);
 
  #if defined(math_errhandling) \
    && (math_errhandling & MATH_ERREXCEPT)
    feclearexcept(FE_ALL_EXCEPT);
  #endif
  errno = 0;
 
  #if !defined(math_errhandling) \
    || (math_errhandling & MATH_ERRNO)
  if (errno != 0) {
    /* Handle rangedomain error */
  }
  #endif
  #if defined(math_errhandling) \
    && (math_errhandling & MATH_ERREXCEPT)
  if (fetestexcept(FE_INVALID
                 | FE_DIVBYZERO
                 | FE_OVERFLOW
                 | FE_UNDERFLOW) != 0) {
    /* Handle range error */
  }
  #endif
}

...

result = sqrt(x);
}

Noncompliant Code Example (sinh(), Range Errors)

This noncompliant code example determines the hyperbolic sine of x:

Code Block
bgColor#FFcccc
langc
#include <math.h>
 
void func(double x) {
  double result;
  result = sinh(x);
}

This code may produce a range error if x has a very large magnitude.

Compliant Solution (sinh(), Range Errors)

Because this function has no domain errors but may have range errors, the programmer must detect a range error and act accordingly:

Code Block
bgColor#ccccff

...

Noncompliant Code Example (pow())

The following noncompliant code raises x to the power of y:

Code Block
bgColor#FFcccc
langc
#include <math.h>
#include <fenv.h>
#include <errno.h>
 
void func(double x, double y) { 
  double result;
  {
    #pragma STDC FENV_ACCESS ON
   result =if pow(x, y);
}

However, this code may produce a domain error if x is negative and y is not an integer or if x is 0 and y is 0. A domain error or pole error may occur if x is 0 and y is negative, and a range error may occur if the result cannot be represented as a double.

Compliant Solution (pow())

Because the pow() function can produce domain errors, pole errors and range errors, the programmer must first check that x and y lie within the proper domain and do not generate a pole error, then detect whether a range error occurs and act accordingly:

Code Block
bgColor#ccccff
langc
#include <errno.h>
#include <math.h>
#if defined(math_errhandling) \
  && (math_errhandling & MATH_ERREXCEPT)
#include <fenv.h>
#endif

void func(double x, double y) {
  #if defined(math_errhandling) \
    && (math_errhandling & MATH_ERREXCEPT)
    feclearexcept(FE_ALL_EXCEPT);
  #endif
  errno = 0;

  double result;

  if (((x == 0.0f) && islessequal(y, 0.0)) || isless(x, 0.0)(math_errhandling & MATH_ERREXCEPT) {
      feclearexcept(FE_ALL_EXCEPT);
    }
    errno = 0;

    result = sinh(x);

    if ((math_errhandling & MATH_ERRNO) && errno != 0) {
      /* Handle range error */
    } else if ((math_errhandling & MATH_ERREXCEPT) &&
               fetestexcept(FE_INVALID | FE_DIVBYZERO |
                            FE_OVERFLOW | FE_UNDERFLOW) != 0) {
      /* Handle domain or polerange error */
    }

  result = pow(x, y);

  #if !defined(math_errhandling) \
    || (math_errhandling & MATH_ERRNO)
  if (errno != 0}
 
  /* Use result... */
}

Noncompliant Code Example (pow())

This noncompliant code example raises x to the power of y:

Code Block
bgColor#FFcccc
langc
#include <math.h>
 
void func(double x, double y) {
  double result;
 /* Handleresult range error */
  }
  #endif
  #if defined(math_errhandling) \
    && (math_errhandling & MATH_ERREXCEPT)
  if (fetestexcept(FE_INVALID
                 | FE_DIVBYZERO
                 | FE_OVERFLOW
                 | FE_UNDERFLOW) != 0) {
    /* Handle range error */
  }
  #endif
}

Risk Assessment

Failure to prevent or detect domain and range errors in math functions may result in unexpected results.

Rule

Severity

Likelihood

Remediation Cost

Priority

Level

FLP32-C

Medium

Probable

Medium

P8

L2

Automated Detection

Tool

Version

Checker

Description

Fortify SCA

5.0

 

Can detect violations of this rule with CERT C Rule Pack

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

Related Guidelines

...

= pow(x, y);
}

This code may produce a domain error if x is negative and y is not an integer value or if x is 0 and y is 0. A domain error or pole error may occur if x is 0 and y is negative, and a range error may occur if the result cannot be represented as a double.

Compliant Solution (pow())

Because the pow() function can produce domain errors, pole errors, and range errors, the programmer must first check that x and y lie within the proper domain and do not generate a pole error and then detect whether a range error occurs and act accordingly:

Code Block
bgColor#ccccff
langc
#include <math.h>
#include <fenv.h>
#include <errno.h>
 
void func(double x, double y) {
  double result;

  if (((x == 0.0f) && islessequal(y, 0.0)) || isless(x, 0.0)) {
    /* Handle domain or pole error */
  }

  {
    #pragma STDC FENV_ACCESS ON
    if (math_errhandling & MATH_ERREXCEPT) {
      feclearexcept(FE_ALL_EXCEPT);
    }
    errno = 0;

    result = pow(x, y);
 
    if ((math_errhandling & MATH_ERRNO) && errno != 0) {
      /* Handle range error */
    } else if ((math_errhandling & MATH_ERREXCEPT) &&
               fetestexcept(FE_INVALID | FE_DIVBYZERO |
                            FE_OVERFLOW | FE_UNDERFLOW) != 0) {
      /* Handle range error */
    }
  }

  /* Use result... */
}

Noncompliant Code Example (asin(), Subnormal Number)

This noncompliant code example determines the inverse sine of x:

Code Block
bgColor#FFcccc
langc
#include <math.h>
 
void func(float x) {
  float result = asin(x);
  /* ... */
}

Compliant Solution (asin(), Subnormal Number)

Because this function has no domain errors but may have range errors, the programmer must detect a range error and act accordingly:

Code Block
bgColor#ccccff
langc
#include <math.h>
#include <fenv.h>
#include <errno.h>
void func(float x) { 
  float result;

  {
    #pragma STDC FENV_ACCESS ON
    if (math_errhandling & MATH_ERREXCEPT) {
      feclearexcept(FE_ALL_EXCEPT);
    }
    errno = 0;

    result = asin(x);

    if ((math_errhandling & MATH_ERRNO) && errno != 0) {
      /* Handle range error */
    } else if ((math_errhandling & MATH_ERREXCEPT) &&
               fetestexcept(FE_INVALID | FE_DIVBYZERO |
                            FE_OVERFLOW | FE_UNDERFLOW) != 0) {
      /* Handle range error */
    }
  }

  /* Use result... */
}

Risk Assessment

Failure to prevent or detect domain and range errors in math functions may cause unexpected results.

Rule

Severity

Likelihood

Remediation Cost

Priority

Level

FLP32-C

Medium

Probable

Medium

P8

L2

Automated Detection

Tool

Version

Checker

Description

Astrée
Include Page
Astrée_V
Astrée_V
stdlib-limits
Partially checked
Axivion Bauhaus Suite

Include Page
Axivion Bauhaus Suite_V
Axivion Bauhaus Suite_V

CertC-FLP32Partially implemented
CodeSonar
Include Page
CodeSonar_V
CodeSonar_V
MATH.DOMAIN.ATAN
MATH.DOMAIN.TOOHIGH
MATH.DOMAIN.TOOLOW
MATH.DOMAIN
MATH.RANGE
MATH.RANGE.GAMMA
MATH.DOMAIN.LOG
MATH.RANGE.LOG
MATH.DOMAIN.FE_INVALID
MATH.DOMAIN.POW
MATH.RANGE.COSH.TOOHIGH
MATH.RANGE.COSH.TOOLOW
MATH.DOMAIN.SQRT
Arctangent Domain Error
Argument Too High
Argument Too Low
Floating Point Domain Error
Floating Point Range Error
Gamma on Zero
Logarithm on Negative Value
Logarithm on Zero
Raises FE_INVALID
Undefined Power of Zero
cosh on High Number
cosh on Low Number
sqrt on Negative Value
Helix QAC

Include Page
Helix QAC_V
Helix QAC_V

C5025

C++5033


Parasoft C/C++test

Include Page
Parasoft_V
Parasoft_V

CERT_C-FLP32-a
Validate values passed to library functions
PC-lint Plus

Include Page
PC-lint Plus_V
PC-lint Plus_V

2423

Partially supported: reports domain errors for functions with the Semantics *dom_1, *dom_lt0, or *dom_lt1, including standard library math functions

Polyspace Bug Finder

Include Page
Polyspace Bug Finder_V
Polyspace Bug Finder_V

CERT-C: Rule FLP32-CChecks for invalid use of standard library floating point routine (rule fully covered)


RuleChecker

Include Page
RuleChecker_V
RuleChecker_V

stdlib-limits
Partially checked
TrustInSoft Analyzer

Include Page
TrustInSoft Analyzer_V
TrustInSoft Analyzer_V

out-of-range argumentPartially verified.

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

Related Guidelines

Key here (explains table format and definitions)

Taxonomy

Taxonomy item

Relationship

CERT C Secure Coding StandardFLP03-C. Detect and handle floating-point errorsPrior to 2018-01-12: CERT: Unspecified Relationship
CWE 2.11CWE-682, Incorrect Calculation2017-07-07: CERT: Rule subset of CWE

CERT-CWE Mapping Notes

Key here for mapping notes

CWE-391 and FLP32-C

Intersection( CWE-391, FLP32-C) =


  • Failure to detect range errors in floating-point calculations


CWE-391 - FLP32-C


  • Failure to detect errors in functions besides floating-point calculations


FLP32-C – CWE-391 =


  • Failure to detect domain errors in floating-point calculations


CWE-682 and FLP32-C

Independent( INT34-C, FLP32-C, INT33-C) CWE-682 = Union( FLP32-C, list) where list =


  • Incorrect calculations that do not involve floating-point range errors

...


Bibliography

[ISO/IEC 9899:
2011
2024]
Subclause

7.3.2, "Conventions"

Subclause

7.12.1, "Treatment of Error Conditions"
F.10.7, "Remainder Functions" 

[IEEE 754 2006 ]
[Plum 1985]Rule 2-2
[Plum 1989]Topic 2.10, "conv—Conversions and Overflow"
[UNIX 1992]System V Interface Definition (SVID3)

...


...

Image Modified Image Modified Image Modified