Compound operations are operations that consist of more than one discrete operation. Expressions that include postfix and or prefix increment ({{\ Wiki Markup +
\+
}}), postfix or prefix decrement ({{\-
\-
}}), or compound assignment operators always result in compound operations. Compound assignment expressions use operators such as {{ *=
, /=
, %=
, +=
, -=
, <<=
, >>=
, >>>=
, ^=
}} and {{|=
}} \ [[JLS 05|AA. Java References#JLS 05]\JLS 2015]. Compound operations on shared variables must be performed atomically to prevent [data races|BB. Definitions#data race] and [race conditions|BB. Definitions#race conditions]. and race conditions.
For information about the atomicity of a grouping of calls to independently atomic methods that belong to thread-safe classes, see CON07 VNA03-J. Do not assume that a group of calls to independently atomic methods is atomic.
The Java Language Specification also permits reads and writes of 64-bit values to be non-atomic . (For more information, see CON25see rule VNA05-J. Ensure atomicity when reading and writing 64-bit values).)
Noncompliant Code Example (Logical Negation)
This noncompliant code example declares a shared boolean
flag
variable and provides a toggle()
method that negates the current value of flag
.:
Code Block | ||
---|---|---|
| ||
final class Flag { private boolean flag = true; public void toggle() { // Unsafe flag = !flag; } public boolean getFlag() { // Unsafe return flag; } } |
Execution of this code may result in a data race because the value of flag
is read, negated, and written back.
Consider, for example, two threads that call toggle()
. The expected effect of toggling flag
twice is that it is restored to its original value. However, the following scenario leaves flag
in the incorrect state:
Time | flag= | Thread | Action |
---|---|---|---|
1 | true | t1 |
Reads the current value of | ||
2 | true | t2 |
Reads the current value of | ||
3 | true | t1 |
Toggles the temporary variable to false | ||
4 | true | t2 |
Toggles the temporary variable to false | ||
5 | false | t1 |
Writes the temporary variable's value to | ||
6 | false | t2 |
Writes the temporary variable's value to |
As a result, the effect of the call by t2 is not reflected in flag
; the program behaves as if the call was never made toggle()
was called only once, not twice.
Noncompliant Code Example (Bitwise Negation)
Similarly, the The toggle()
method can may also use the compound assignment operator ^=
to negate the current value of flag
.:
Code Block | ||
---|---|---|
| ||
final class Flag { private boolean flag = true; public void toggle() { // Unsafe flag ^= true; // Same as flag = !flag; } public boolean getFlag() { // Unsafe return flag; } } |
This code is also not thread-safe. A A data race exists because ^=
is a non-atomic compound operation.
Noncompliant Code Example (
...
Volatile)
Declaring flag
as volatile does not help either volatile also fails to solve the problem:
Code Block | ||
---|---|---|
| ||
final class Flag { private volatile boolean flag = true; public void toggle() { // Unsafe flag ^= true; } public boolean getFlag() { // Safe return flag; } } |
This code remains unsuitable for multithreaded use because declaring a variable as volatile does not fails to guarantee the atomicity of compound operations on itthe variable.
Compliant Solution (Synchronization)
This compliant solution declares both the toggle()
and getFlag()
methods as synchronized.:
Code Block | ||
---|---|---|
| ||
final class Flag { private boolean flag = true; public synchronized void toggle() { flag ^= true; // Same as flag = !flag; } public synchronized boolean getFlag() { return flag; } } |
This solution guards reads and writes to the flag
field with a lock on the instance, that is, this
. This compliant solution Furthermore, synchronization ensures that changes are visible to all the threads. Now, only two execution orders are possible, one of which is shown below.in the following scenario:
Time | flag= | Thread | Action |
---|---|---|---|
1 | true | t1 |
Reads the current value of | ||
2 | true | t1 |
Toggles the temporary variable to false | ||
3 | false | t1 |
Writes the temporary variable's value to | ||
4 | false | t2 |
Reads the current value of | ||
5 | false | t2 |
Toggles the temporary variable to true | ||
6 | true | t2 |
Writes the temporary variable's value to |
The second execution order involves the same operations, but t2 starts and finishes before t1.
Compliance with CON04LCK00-J. Synchronize using an internal Use private final lock objectobjects to synchronize classes that may interact with untrusted code can reduce the likelihood of misuse by ensuring that untrusted callers cannot access the lock object.
Compliant Solution (Volatile-Read, Synchronized-Write)
In this compliant solution, the getFlag()
method is not synchronized, and flag
is declared as volatile. This solution is compliant because the read of flag
in the getFlag()
method is an atomic operation and the volatile qualification assures visibility. The toggle()
method still requires synchronization because it performs a non-atomic operation.
Code Block | ||
---|---|---|
| ||
final class Flag { private volatile boolean flag = true; public synchronized void toggle() { flag ^= true; // Same as flag = !flag; } public boolean getFlag() { return flag; } } |
This approach may must not be used when a getter method performs operations other than just returning the value of a {{volatile}} field without having to use any synchronization. Unless read performance is critical, this technique may not offer significant advantages over synchronization \[[Goetz 06|AA. Java References#Goetz 06]\]. Wiki Markup
CON11-J. Do not assume that declaring an object reference volatile guarantees visibility of its members also addresses the volatile-read, synchronized-write pattern.
for getter methods that perform any additional operations other than returning the value of a volatile field without use of synchronization. Unless read performance is critical, this technique may lack significant advantages over synchronization [Goetz 2006].
Compliant Solution (Read-Write Lock)
This compliant solution uses a read-write lock to ensure atomicity and visibility. :
Code Block | ||
---|---|---|
| ||
final class Flag { private boolean flag = true; private final ReadWriteLock lock = new ReentrantReadWriteLock(); private final Lock readLock = lock.readLock(); private final Lock writeLock = lock.writeLock(); public synchronized void toggle() { writeLock.lock(); try { flag ^= true; // Same as flag = !flag; } finally { writeLock.unlock(); } } public boolean getFlag() { readLock.lock(); try { return flag; } finally { readLock.unlock(); } } } |
Read-write locks allow shared state to be accessed by multiple readers or a single writer but never both. According to Goetz \[[Goetz 06|AA. Java References#Goetz 06]\]: Read-write locks allow shared state to be accessed by multiple readers or a single writer but never both. According to Goetz [Goetz 2006]: Wiki Markup
In practice, read-write locks can improve performance for frequently accessed read-mostly data structures on multiprocessor systems; under other conditions they perform slightly worse than exclusive locks due to their greater complexity.
Profiling the application can determine the suitability of read-write locks.
Compliant Solution (AtomicBoolean
)
This compliant solution declares flag
as an AtomicBoolean
type. to be of type AtomicBoolean
:
Code Block | ||
---|---|---|
| ||
import java.util.concurrent.atomic.AtomicBoolean; final class Flag { private AtomicBoolean flag = new AtomicBoolean(true); public void toggle() { boolean temp; do { temp = flag.get(); } while (!flag.compareAndSet(temp, !temp)); } public AtomicBoolean getFlag() { return flag; } } |
The flag
variable is updated using the compareAndSet()
method of the AtomicBoolean
class. All updates are visible to other threads.
Noncompliant Code Example (Addition of
...
Primitives)
In this noncompliant code example, multiple threads can invoke the setValues()
method to set the a
and b
fields. Because this class does not fails to test for integer overflow, a user users of the Adder
class must ensure that the arguments to the setValues()
method can be added without overflow . (For more information, see INT00NUM00-J. Perform explicit range checking to ensure integer operations do not overflow.)Detect or prevent integer overflow for more information).
Code Block | ||
---|---|---|
| ||
final class Adder {
private int a;
private int b;
public int getSum() {
return a + b;
}
public void setValues(int a, int b) {
this.a = a;
this.b = b;
}
}
|
The getSum()
method contains a data race condition. For example, if when a
and b
currently have the values 0
and Integer.MAX_VALUE
, respectively, and one thread calls getSum()
while another calls setValues(Integer.MAX_VALUE, 0)
, the getSum()
method might return either 0
or Integer.MAX_VALUE
, or it might overflow and wrap. Overflow will occur when the first thread reads a
and b
, after the second thread has set the value of a
to Integer.MAX_VALUE
but before it has set the value of b
to 0
.
Note that declaring the variables as volatile does not fails to resolve the issue because these compound operations involve reads and writes of multiple variables.
Noncompliant Code Example (Addition of
...
Atomic Integers)
In this noncompliant code example, a
and b
are replaced with atomic integers.:
Code Block | ||
---|---|---|
| ||
final class Adder { private final AtomicInteger a = new AtomicInteger(); private final AtomicInteger b = new AtomicInteger(); public int getSum() { return a.get() + b.get(); } public void setValues(int a, int b) { this.a = a.set(a); this.b = b.set(b); } } |
This does not eliminate the data race because The simple replacement of the two int
fields with atomic integers fails to eliminate the race condition because the compound operation a.get() + b.get()
is still non-atomic.
Compliant Solution (Addition)
This compliant solution synchronizes the setValues()
and getSum()
methods to ensure atomicity.:
Code Block | ||
---|---|---|
| ||
final class Adder { private int a; private int b; public synchronized int getSum() { return// aCheck + bfor overflow return a + b; } public synchronized void setValues(int a, int b) { this.a = a; this.b = b; } } |
Risk Assessment
The operations within the synchronized methods are now atomic with respect to other synchronized methods that lock on that object's monitor (that is, its intrinsic lock). It is now possible, for example, to add overflow checking to the synchronized getSum()
method without introducing the possibility of a race condition.
Risk Assessment
When operations on shared variables are not atomic, unexpected results can be produced. For example, If operations on shared variables are not atomic, unexpected results can be produced. For example, information can be disclosed inadvertently because one user can receive information about other users.
Rule | Severity | Likelihood | Remediation Cost | Priority | Level |
---|
VNA02-J |
Medium |
Probable |
Medium | P8 | L2 |
Automated Detection
The SureLogic Flashlight tool can diagnose violations of this guideline as instance fields with empty locksets.
Related Vulnerabilities
Any vulnerabilities resulting from the violation of this rule are listed on the CERT website.
References
Wiki Markup |
---|
\[[API 06|AA. Java References#API 06]\] Class AtomicInteger
\[[JLS 05|AA. Java References#JLS 05]\] [Chapter 17, Threads and Locks|http://java.sun.com/docs/books/jls/third_edition/html/memory.html], Section 17.4.5 Happens-Before Order, Section 17.4.3 Programs and Program Order, Section 17.4.8 Executions and Causality Requirements
\[[Tutorials 08|AA. Java References#Tutorials 08]\] [Java Concurrency Tutorial|http://java.sun.com/docs/books/tutorial/essential/concurrency/index.html]
\[[Lea 00|AA. Java References#Lea 00]\] Section 2.2.7 The Java Memory Model, Section 2.1.1.1 Objects and Locks
\[[Bloch 08|AA. Java References#Bloch 08]\] Item 66: Synchronize access to shared mutable data
\[[Goetz 06|AA. Java References#Goetz 06]\] 2.3. "Locking"
\[[MITRE 09|AA. Java References#MITRE 09]\] [CWE ID 667|http://cwe.mitre.org/data/definitions/667.html] "Insufficient Locking," [CWE ID 413|http://cwe.mitre.org/data/definitions/413.html] "Insufficient Resource Locking," [CWE ID 366|http://cwe.mitre.org/data/definitions/366.html] "Race Condition within a Thread," [CWE ID 567|http://cwe.mitre.org/data/definitions/567.html] "Unsynchronized Access to Shared Data" |
Some available static analysis tools can detect the instances of non-atomic update of a concurrently shared value. The result of the update is determined by the interleaving of thread execution. These tools can detect the instances where thread-shared data is accessed without holding an appropriate lock, possibly causing a race condition.
Tool | Version | Checker | Description | ||||||
---|---|---|---|---|---|---|---|---|---|
CodeSonar | 4.2 | FB.MT_CORRECTNESS.IS2_INCONSISTENT_SYNC FB.MT_CORRECTNESS.IS_FIELD_NOT_GUARDED FB.MT_CORRECTNESS.STCAL_INVOKE_ON_STATIC_CALENDAR_INSTANCE FB.MT_CORRECTNESS.STCAL_INVOKE_ON_STATIC_DATE_FORMAT_INSTANCE FB.MT_CORRECTNESS.STCAL_STATIC_CALENDAR_INSTANCE FB.MT_CORRECTNESS.STCAL_STATIC_SIMPLE_DATE_FORMAT_INSTANCE | Inconsistent synchronization Field not guarded against concurrent access Call to static Calendar Call to static DateFormat Static Calendar field Static DateFormat | ||||||
Coverity | 7.5 | GUARDED_BY_VIOLATION | Implemented | ||||||
Parasoft Jtest |
| CERT.VNA02.SSUG CERT.VNA02.MRAV | Make the get method for a field synchronized if the set method is synchronized Access related Atomic variables in a synchronized block | ||||||
PVS-Studio |
| V6074 | |||||||
ThreadSafe |
| CCE_SL_INCONSISTENT | Implemented |
Related Guidelines
CWE-366, Race Condition within a Thread |
Bibliography
[API 2014] | |
Item 66, "Synchronize Access to Shared Mutable Iata" | |
Section 2.3, "Locking" | |
[JLS 2015] | Chapter 17, "Threads and Locks" |
[Lea 2000] | Section 2.1.1.1, "Objects and Locks" |
...
11. Concurrency (CON) 11. Concurrency (CON) CON02-J. Do not synchronize on objects that may be reused