Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

The following standard library functions take a pointer argument and a size argument, with the constraint that the pointer must point to a valid memory object of at least the number of elements indicated by the size argument.

fgets()fgetws()mbstowcs()1 wcstombs()1
mbrtoc16()2 mbrtoc32()2mbsrtowcs()1wcsrtombs()1
mbtowc()2 mbrtowc()
1 
2mblen()mbrlen()
memchr()wmemchr()memset()wmemset()
strftime()wcsftime()strxfrm()1wcsxfrm()1
strncat()2 wcsncat()2snprintf()vsnprintf()
swprintf()vswprintf()setvbuf()tmpnam_s()
snprintf_s()sprintf_s() vsnprintf_s()vsprintf_s()
gets_s() getenv_s()wctomb_s()mbstowcs_s()3
wcstombs_s()3memcpy_s()3memmove_s()3strncpy_s()3
strncat_s()3strtok_s()2strerror_s()strnlen_s()
asctime_s()ctime_s()snwprintf_s()swprintf_s()
vsnwprintf_s()vswprintf_s()wcsncpy_s()3wmemcpy_s()3
wmemmove_s()3wcsncat_s()3wcstok_s()2wcsnlen_s()
wcrtomb_s()mbsrtowcs_s()3wcsrtombs_s()3memset_s()4

1 Takes two pointers and an integer, but the integer specifies the element count only of the output buffer, not of the input buffer.
2 Takes two pointers and an integer, but the integer specifies the element count only of the input buffer, not of the output buffer.
3 Takes two pointers and two integers; each integer corresponds to the element count of one of the pointers.
4 Takes a pointer and two size-related integers; the first size-related integer parameter specifies the number of bytes available in the buffer; the second size-related integer parameter specifies the number of bytes to write within the buffer.

...

The following standard library functions take two pointer arguments and a size argument, with the constraint that both pointers must point to valid memory objects of at least the number of elements indicated by the size argument. 

memcpy()wmemcpy()memmove()wmemmove()
strncpy()wcsncpy()memcmp()wmemcmp()
strncmp()wcsncmp()strcpy_s()wcscpy_s()
strcat_s()wcscat_s()
 
 


For calls that take two pointers and an integer size, the given size should not be greater than the element count of either pointer.

...

The following standard library functions take a pointer argument and two size arguments, with the constraint that the pointer must point to a valid memory object containing at least as many bytes as the product of the two size arguments.

bsearch()bsearch_s()qsort()qsort_s()
fread()fwrite() 
 

For calls that take a pointer and two integers, one integer represents the number of bytes required for an individual object, and a second integer represents the number of elements in the array. The resulting product of the two integers should not be greater than the element count of the pointer were it expressed as an unsigned char *.  

...

Code Block
bgColor#ffcccc
langc
int dtls1_process_heartbeat(SSL *s) {         
  unsigned char *p = &s->s3->rrec.data[0], *pl;
  unsigned short hbtype;
  unsigned int payload;
  unsigned int padding = 16; /* Use minimum padding */
 
  /* Read type and payload length first */
  hbtype = *p++;
  n2s(p, payload);
  pl = p;
 
  /* ... More code ... */
 
  if (hbtype == TLS1_HB_REQUEST) {
    unsigned char *buffer, *bp;
    int r;
 
    /* 
     * Allocate memory for the response; size is 1 byte
     * message type, plus 2 bytes payload length, plus
     * payload, plus padding.
     */
    buffer = OPENSSL_malloc(1 + 2 + payload + padding);
    bp = buffer;
 
    /* Enter response type, length, and copy payload */
    *bp++ = TLS1_HB_RESPONSE;
    s2n(payload, bp);
    memcpy(bp, pl, payload);
 
    /* ... More code ... */
  }
  /* ... More code ... */
}


 

This code processes a "heartbeat" packet from a client. As specified in RFC 6520, when the program receives a heartbeat packet, it must echo the packet's data back to the client. In addition to the data, the packet contains a length field that conventionally indicates the number of bytes in the packet data, but there is nothing to prevent a malicious packet from lying about its data length.

The p pointer, along with payload and p1, contains data from a packet. The code allocates a buffer sufficient to contain payload bytes, with some overhead, then copies payload bytes starting at p1 into this buffer and sends it to the client. Notably absent from this code are any checks that the payload integer variable extracted from the heartbeat packet corresponds to the size of the packet data. Because the client can specify an arbitrary value of payload, an attacker can cause the server to read and return the contents of memory beyond the end of the packet data, which violates INT04-C. Enforce limits on integer values originating from tainted sources. The resulting call to memcpy() can then copy the contents of memory past the end of the packet data and the packet itself, potentially exposing sensitive data to the attacker. This call to memcpy() violates ARR38-C. Guarantee that library functions do not form invalid pointers. A version of ARR38-C also appears in ISO/IEC TS 17961:2013, "Forming invalid pointers by library functions [libptr]." This rule would require a conforming analyzer to diagnose the Heartbleed vulnerability.

 


Compliant Solution (Heartbleed)

OpenSSL version 1.0.1g contains the following patch, which guarantees that payload is within a valid range. The range is limited by the size of the input record.

Code Block
bgColor#ccccff
langc
int dtls1_process_heartbeat(SSL *s) {         
  unsigned char *p = &s->s3->rrec.data[0], *pl;
  unsigned short hbtype;
  unsigned int payload;
  unsigned int padding = 16; /* Use minimum padding */
 
  /* ... More code ... */
 
  /* Read type and payload length first */
  if (1 + 2 + 16 > s->s3->rrec.length)
    return 0; /* Silently discard */
  hbtype = *p++;
  n2s(p, payload);
  if (1 + 2 + payload + 16 > s->s3->rrec.length)
    return 0; /* Silently discard per RFC 6520 */
  pl = p;
 
  /* ... More code ... */
 
  if (hbtype == TLS1_HB_REQUEST) {
    unsigned char *buffer, *bp;
    int r;
 
    /* 
     * Allocate memory for the response; size is 1 byte
     * message type, plus 2 bytes payload length, plus
     * payload, plus padding.
     */
    buffer = OPENSSL_malloc(1 + 2 + payload + padding);
    bp = buffer;
    /* Enter response type, length, and copy payload */
    *bp++ = TLS1_HB_RESPONSE;
    s2n(payload, bp);
    memcpy(bp, pl, payload);
    /* ... More code ... */
  }
  /* ... More code ... */
}

Risk Assessment

Depending on the library function called, an attacker may be able to use a heap or stack overflow vulnerability to run arbitrary code.

Rule

Severity

Likelihood

Remediation Cost

Priority

Level

ARR38-C

High

Likely

Medium

P18

L1

Automated Detection

Tool

Version

Checker

Description

Astrée
Include Page
Astrée_V
Astrée_V
 Supported, but no explicit checker
array_out_of_bounds

Supported

Astrée reports all out-of-bound accesses within library analysis stubs. The user may provide additional stubs for arbitrary (library) functions.

CodeSonar
Include Page
CodeSonar_V
CodeSonar_V

LANG.MEM.BO
LANG.MEM.BU
BADFUNC.BO.*

Buffer overrun
Buffer underrun
A collection of warning classes that report uses of library functions prone to internal buffer overflows

Compass/ROSE

 

 

 




Coverity
Include Page
Coverity_V
Coverity_V

BUFFER_SIZE

BAD_SIZEOF

BAD_ALLOC_STRLEN

BAD_ALLOC_ARITHMETIC

Implemented

Fortify SCA

5.0

 


Can detect violations of this rule with CERT C Rule Pack

Klocwork
Helix QAC

Include Page

Klocwork

Helix QAC_V

Klocwork

Helix QAC_V

ABV.ANY_SIZE_ARRAY
ABV.GENERAL
ABV.ITERATOR
ABV.STACK
ABV.TAINTED
ABV.UNKNOWN_SIZE

C2840

DF2840, DF2841, DF2842, DF2843, DF2845, DF2846, DF2847, DF2848, DF2935, DF2936, DF2937, DF2938, DF4880, DF4881, DF4882, DF4883


Klocwork

Include Page
Klocwork_V
Klocwork_V

ABV.GENERAL
ABV.GENERAL.MULTIDIMENSION

 


LDRA tool suite
Include Page
LDRA_V
LDRA_V
64 X, 66 X, 68 X, 69 X, 70 X, 71 X, 79 X
Partially Implmented
Parasoft C/C++test
9.5BD-PB-OVERF{RD,WR,FMT,NZT}Fully implemented
Include Page
Parasoft_V
Parasoft_V

CERT_C-ARR38-a
CERT_C-ARR38-b
CERT_C-ARR38-c
CERT_C-ARR38-d

Avoid overflow when reading from a buffer
Avoid overflow when writing to a buffer
Avoid buffer overflow due to defining incorrect format limits
Avoid overflow due to reading a not zero terminated string

Parasoft Insure++
 
 Array access out of bounds,


Runtime analysis
Polyspace Bug FinderR2016a
PC-lint Plus

Include Page
PC-lint Plus_V
PC-lint Plus_V

419, 420

Partially supported

Polyspace Bug Finder

Include Page
Polyspace Bug Finder_V
Polyspace Bug Finder_V

CERT C: Rule ARR38-C

Checks for:

  • Mismatch between data length and size
  • Invalid use of standard library memory routine
  • Possible misuse of sizeof
  • Buffer overflow from incorrect string format specifier
,
  • Invalid use of standard library string routine
  • Destination buffer overflow in string manipulation
,
  • Destination buffer underflow in string manipulation
, Invalid use of standard library memory routine
Invalid use of standard library string routine, Mismatch between data length and size, Pointer access out of bounds
Possible misuse of sizeof, Use of tainted pointerGuarantee that library functions do not form invalid pointersPRQA QA-C Include PagePRQA QA-C_vPRQA QA-C_v

2845, 2846, 2847, 2848, 2849, 2930, 2932, 2933, 2934

Fully implementedPRQA QA-C++ Include Pagecplusplus:PRQA QA-C++_Vcplusplus:PRQA QA-C++_V

2840, 2841, 2842, 2843, 2844

Fully implemented

Splint

Include PageSplint_VSplint_V

 

 

Related Vulnerabilities

Rule partially covered.

Splint

Include Page
Splint_V
Splint_V



TrustInSoft Analyzer

Include Page
TrustInSoft Analyzer_V
TrustInSoft Analyzer_V

out of bounds readPartially verified.

Related Vulnerabilities

CVE-2016-2208 results from a violation of this rule. The attacker can supply a CVE-2016-2208 results from a violation of this rule. The attacker can supply a value used to determine how much data is copied into a buffer via memcpy(), resulting in a buffer overlow of attacker-controlled data.

...

Key here (explains table format and definitions)

Taxonomy

Taxonomy item

Relationship

C Secure Coding StandardAPI00-C. Functions should validate their parametersPrior to 2018-01-12: CERT: Unspecified Relationship
C Secure Coding StandardARR01-C. Do not apply the sizeof operator to a pointer when taking the size of an arrayPrior to 2018-01-12: CERT: Unspecified Relationship
C Secure Coding StandardINT30-C. Ensure that unsigned integer operations do not wrapPrior to 2018-01-12: CERT: Unspecified Relationship
ISO/IEC TS 17961:2013Forming invalid pointers by library functions [libptr]Prior to 2018-01-12: CERT: Unspecified Relationship
ISO/IEC TR 24772:2013Buffer Boundary Violation (Buffer Overflow) [HCB]Prior to 2018-01-12: CERT: Unspecified Relationship
ISO/IEC TR 24772:2013Unchecked Array Copying [XYW]Prior to 2018-01-12: CERT: Unspecified Relationship
CWE 2.11CWE-119, Improper Restriction of Operations within the Bounds of a Memory Buffer2017-05-18: CERT: Rule subset of CWE
CWE 2.11CWE-121, Stack-based Buffer Overflow2017-05-18: CERT: Partial overlap
CWE 2.11CWE-123, Write-what-where Condition2017-05-18: CERT: Partial overlap
CWE 2.11CWE-125, Out-of-bounds Read2017-05-18: CERT: Partial overlap
CWE 2.11CWE-805, Buffer Access with Incorrect Length Value2017-05-18: CERT: Partial overlap
CWE 3.1CWE-129, Improper Validation of Array Index

2017-10-30:MITRE:Unspecified Relationship

2018-10-18:CERT:Partial Overlap

CERT-CWE Mapping Notes

Key here for mapping notes

...

Independent( ARR30-C, ARR38-C, EXP39-C, INT30-C)

STR31-C = Subset( Union( ARR30-C, ARR38-C))

STR32-C = Subset( ARR38-C)

...

Independent(ARR30-C, ARR38-C)

STR31-C = Subset( Union( ARR30-C, ARR38-C))

STR32-C = Subset( ARR38-C)

...

  • Overwriting a C++ object with virtual functions (because it has a virtual pointer)
  • Others?

Intersection( CWE-123, ARR38-C) =

  • Buffer overflow via passing invalid arguments to library function

ARR38-C – CWE-123 =

  • Buffer overflow to “harmless” memory from passing invalid arguments to library function
  • Out-of-bounds read from passing invalid arguments to library function

CWE-123 – ARR38-C =

  • Arbitrary writes that do not involve standard C library functions
  • ?

Intersection( CWE-123, ARR38-C) =

  • Buffer overflow via passing invalid arguments to library function

ARR38-C – CWE-123 =

  • Buffer overflow to “harmless” memory from passing invalid arguments to library function
  • Out-of-bounds read from passing invalid arguments to library function

CWE-123 – ARR38-C =

  • Arbitrary writes that do not involve standard C library functions

CWE-129 and ARR38-C

ARR38-C -CWE-129 = making library functions create invalid pointers without using untrusted data.

E.g. : char[3] array;

strcpy(array, "123456");

CWE-129 - ARR38-C = not validating an integer used as an array index or in pointer arithmetic

E.g.: void foo(int i) {

  char array[3];

  array[i];

}

Intersection(ARR38-C, CWE-129) = making library functions create invalid pointers using untrusted data.

eg: void foo(int i) {

  char src[3], dest[3];

  memcpy(dest, src, i);

}

Bibliography

...



...