Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.
Comment: Migration of unmigrated content due to installation of a new plugin

Threads and tasks that block on operations involving network or file I/O must provide callers with an explicit termination mechanism to prevent denial-of-service (DoS) vulnerabilities.

Noncompliant Code Example (Blocking I/O, Volatile Flag)

This noncompliant code example uses a volatile done flag to indicate it whether is safe to shut down the thread, as suggested in THI05-J. Do not use Thread.stop() to terminate threads. However, when the thread is blocked on network I/O as a consequence of invoking the readLine() method, it cannot respond to the newly set flag until the network I/O is complete. Consequently, thread termination may be indefinitely delayed.

Code Block
bgColor#FFcccc
// Thread-safe class 
public final class SocketReader implements Runnable { 
  private final Socket socket;
  private final BufferedReader in;
  private volatile boolean done = false;
  private final Object lock = new Object();

  public SocketReader(String host, int port) throws IOException {
    this.socket = new Socket(host, port);
    this.in = new BufferedReader(
        new InputStreamReader(this.socket.getInputStream())
    );
  }

  // Only one thread can use the socket at a particular time
  @Override public void run() {
    try {
      synchronized (lock) {
        readData();
      }
    } catch (IOException ie) {
      // Forward to handler
    }
  }

  public void readData() throws IOException {
    String string;
    while (!done && (string = in.readLine()) != null) {
      // Blocks until end of stream (null)
    }
  }

  public void shutdown(
Wiki Markup
The recommendations suggested in the guideline [CON13-J. Do not use Thread.stop() to terminate threads] are insufficient to terminate a thread that is blocked on an operation involving network or file input or output (IO). Threads and tasks should provide callers with an explicit termination mechanism to prevent denial of service vulnerabilities.


h2. Noncompliant Code Example (blocking IO, volatile flag)

This noncompliant code example uses a volatile {{done}} flag to indicate that it is safe to shut down the thread, as suggested in [CON13-J. Do not use Thread.stop() to terminate threads]. However, setting the flag does not terminate the thread because the thread is blocked on network IO as a consequence of using the {{readLine()}} method. 

{code:bgColor=#FFcccc}
public final class SocketReader implements Runnable { // Thread-safe class
  private final Socket socket;
  private final BufferedReader in;
  private volatile boolean done = false;
  private final Object lock = new Object();

  public SocketReader(String host, int port) throws IOException {
    this.socket = new Socket(host, port);
    this.in = new BufferedReader(new InputStreamReader(this.socket.getInputStream()));
  }
  
  // Only one thread can use the socket at a particular time
  public void run() {
    try {
      synchronized (lock) {
        readData(); 
      }      
    } catch (IOException ie) {
    done  // Forward to handler
    }= true;
  }

  public static void readDatamain() throws IOException {String[] args) 
    String string;
    while (!done && (string = in.readLine()) != null) {
      // Blocks until endthrows ofIOException, streamInterruptedException (null){
    }
SocketReader reader }

=  public void shutdown() {
new SocketReader("somehost", 25);
    Thread donethread = true new Thread(reader);
    }
thread.start();
  public static void main(String[] args) throws IOException, InterruptedException {
    SocketReader reader = new SocketReader("somehost", 25);
    Thread thread = new Thread(reader);
    thread.start();
    Thread.sleep(1000);
    reader.shutdown(); // Shutdown the thread
  }
}
{code}


h2. Noncompliant Code Example (blocking IO, interruptible)

This noncompliant code example is similar to the preceding one, but uses thread interruption to shut down the thread. Network IO is not responsive to thread interruption when a {{java.net.Socket}} is being used. 

{code:bgColor=#FFcccc}
public final class  Thread.sleep(1000);
    reader.shutdown(); // Shut down the thread
  }
}

Noncompliant Code Example (Blocking I/O, Interruptible)

This noncompliant code example is similar to the preceding example but uses thread interruption to shut down the thread. Network I/O on a java.net.Socket is unresponsive to thread interruption.

Code Block
bgColor#FFcccc
// Thread-safe class 
public final class SocketReader implements Runnable { // Thread-safe class
  // Other methods...
  
  public void readData() throws IOException {
    String string;
    while (!Thread.interrupted() && (string = in.readLine()) != null) { 
      // Blocks until end of stream (null)
    }
  }
  
  public static void main(String[] args) 
                          throws IOException, InterruptedException {
    SocketReader reader = new SocketReader("somehost", 25);
    Thread thread = new Thread(reader);
    thread.start();
    Thread.sleep(1000); 
    thread.interrupt(); // Interrupt the thread
  }
}

Compliant Solution (Close Socket Connection)

This compliant solution terminates the blocking network I/O by closing the socket in the shutdown() method. The readLine() method throws a SocketException when the socket is closed, consequently allowing the thread to proceed. Note that it is impossible to keep the connection alive while simultaneously halting the thread both cleanly and immediately.

Code Block
bgColor#ccccff
{code}


h2. Compliant Solution (close socket connection)

This compliant solution resumes the thread by having the {{shutdown()}} method close the socket. The {{readLine()}} method throws a {{SocketException}} when the socket is closed which lets the thread proceed. Note that there is no way to keep the connection alive if the thread is to be cleanly halted immediately.

{code:bgColor=#ccccff}
public final class SocketReader implements Runnable {
  // Other methods...
  
  public void readData() throws IOException {
    String string;
    try {
      while ((string = in.readLine()) != null) { 
        // Blocks until end of stream (null)
      }
    } finally {
      shutdown();
    }
  }
  
  public void shutdown() throws IOException {
    socket.close();
  }

  public static void main(String[] args) 
 throws IOException, InterruptedException                        throws IOException, InterruptedException {
    SocketReader reader = new SocketReader("somehost", 25);
    Thread thread = new Thread(reader);
    thread.start();
    Thread.sleep(1000); 
    reader.shutdown();
  }
}
{code}

The {{finally}} block executes after {{

After the shutdown()

...

method is

...

called from main(), the finally block in readData() executes and calls shutdown() again, closing the socket for a second time. However, when the socket has already been closed, this second call does nothing.

When performing asynchronous I/O, a java.nio.channels.Selector

...

can be unblocked by invoking either its close() or its wakeup() method.

When additional operations must be performed after emerging from the blocked state, use a boolean flag to indicate pending termination. When supplementing the code with such a flag, the shutdown() method should also set the flag to false so that the thread can cleanly exit from the while loop.

Compliant Solution (Interruptible Channel)

This compliant solution uses an interruptible channel, java.nio.channels.SocketChannel

...

,

...

instead

...

of

...

a

...

Socket

...

connection.

...

If

...

the

...

thread

...

performing

...

the

...

network I/O is interrupted using the Thread.interrupt()

...

method

...

while

...

it

...

is

...

reading

...

the

...

data,

...

the

...

thread

...

receives

...

a ClosedByInterruptException, and the channel is closed immediately. The thread's interrupted status is also set.

Code Block
bgColor#ccccff
 {{ClosedByInterruptException}} and the channel is closed immediately. The thread's interrupt status is also set.

{code:bgColor=#ccccff}
public final class SocketReader implements Runnable {
  private final SocketChannel sc;
  private final Object lock = new Object();
  
  public SocketReader(String host, int port) throws IOException {
    sc = SocketChannel.open(new InetSocketAddress(host, port));    
  }

  
 @Override public void run() {
    ByteBuffer buf = ByteBuffer.allocate(1024);
    try {
      synchronized (lock) {
        while (!Thread.interrupted()) {
          sc.read(buf);
          // ...
        }
      }
    } catch (IOException ie) {
      // Forward to handler
    }
  }

  public static void main(String[] args) 
 throws                          throws IOException, InterruptedException {
    SocketReader reader = new SocketReader("somehost", 25);
    Thread thread = new Thread(reader);
    thread.start();
    Thread.sleep(1000);
    thread.interrupt();
  }
}
{code}

This

...

technique

...

interrupts

...

the

...

current

...

thread

...

. However,

...

it

...

stops

...

the

...

thread

...

only because

...

the

...

code

...

polls

...

the

...

thread's interrupted status with the Thread.interrupted()

...

method and terminates the thread when it is interrupted. Using a SocketChannel ensures that the condition in the while loop is tested as soon as an interruption is received, even though the read is normally a blocking operation. Similarly, invoking the interrupt() method of a thread blocked on a java.nio.channels.Selector

...

also

...

causes

...

that

...

thread

...

to

...

awaken.

Noncompliant Code Example (Database Connection)

This noncompliant code example shows a thread-safe DBConnector class that creates one JDBC connection per thread. Each connection belongs to one thread and is not shared by other threads. This is a common use case because JDBC connections are intended to be single-threaded.

Code Block
bgColor#FFcccc
 


h2. Noncompliant Code Example (database connection)

This noncompliant code example shows a thread-safe class {{DBConnector}} that creates one JDBC connection per thread.  Each connection belongs to one thread, and is not shared by other threads. This is a common use-case because JDBC connections are not meant to be shared by multiple-threads. 

{code:bgColor=#FFcccc}
public final class DBConnector implements Runnable {
  private final String query;
  
  DBConnector(String query) {
    this.query = query; 
  }
	
  @Override public void run() {
    Connection connection;
    try {
      // Username and password are hard coded for brevity
      connection = DriverManager.getConnection("
          "jdbc:driver:name", 
          "username", 
          "password"
      );  
      Statement stmt = connection.createStatement();
      ResultSet rs = stmt.executeQuery(query);
      // ...
    } catch (SQLException e) {
      // Forward to handler
    }
    // ... 
  }  

  public static void main(String[] args) throws InterruptedException {
    DBConnector connector = new DBConnector("suitable query");
    Thread thread = new Thread(connector);
    thread.start();
    Thread.sleep(5000);
    thread.interrupt();
  }
}
{code}

Unfortunately database 

Database connections,

...

like

...

sockets,

...

lack inherent interruptibility. Consequently,

...

this design fails to support the client's attempts to cancel a task by closing the resource when the corresponding thread is blocked on a long-running query, such as a join.

Compliant Solution (Statement.cancel())

This compliant solution uses a ThreadLocal wrapper around the connection so that a thread calling the initialValue() method obtains a unique connection instance. This approach allows provision of a cancelStatement() so that other threads or clients can interrupt a long-running query when required. The cancelStatement() method invokes the Statement.cancel() method.

Code Block
bgColor#ccccff
public final class DBConnector implements Runnable {
  private final String query;
  private volatile Statement stmt;

  DBConnector(String query) {
    this.query = query;
  }

  private static final ThreadLocal<Connection> connectionHolder = 
                                       new ThreadLocal<Connection>() {
    Connection connection = null;

    @Override public Connection initialValue() {
      try {
        // ...
        connection = DriverManager.getConnection(
            "jdbc:driver:name", 
            "username", 
            "password"
        );
      } catch (SQLException e) design does not permit a client to cancel a task by closing the resource if the corresponding thread is blocked on a long running activity such as a join query. 

{mc}Not sure what to do with the following text. ~DS :
Other than helping thread cancellation, a mechanism to close connections also prevents thread starvation because threads can be allowed to fairly share the limited number of database connections available in the pool. A similar mechanism is required for task cancellation when using socket objects that are local to a method. {mc}


h2. Compliant Solution (ThreadLocal)

This compliant solution uses a {{ThreadLocal}} wrapper around the connection so that a thread that calls {{initialValue()}} obtains a unique connection instance. The advantage of this approach is that a {{shutdownConnection()}} method can be provided so that clients external to the class can also close the connection when the corresponding thread is blocked, or is performing some time consuming activity.

{code:bgColor=#ccccff}
public final class DBConnector implements Runnable {
  private final String query;
  
  DBConnector(String query) {
    this.query = query;
  }
	
  private static ThreadLocal<Connection> connectionHolder = new ThreadLocal<Connection>() {
    Connection connection = null;

    @Override public Connection initialValue() {		
      try {
        // Username and password are hard coded for brevityForward to handler
      }
      return  connection = DriverManager.getConnectionconnection;
    }
  };

  public Connection ("jdbc:driver:name", "username", "password");  	    	      
      } catch (SQLException e) {
        // Forward to handler
getConnection() {
    return connectionHolder.get();
  }

  public boolean cancelStatement() { // Allows client to cancel statement
    Statement tmpStmt = stmt;
    if (tmpStmt != null) {
      try }{
       return connectiontmpStmt.cancel();
        return }
		
true;
     @Override public} voidcatch set(ConnectionSQLException cone) {
      if(connection == null) { // ShutsForward downto connectionhandler
 when con = null		   }
    }
    return false;
  }

  @Override public void run() {
    try {
      if (getConnection() !=  connection.close();null) {
        }stmt catch= (SQLException e) {getConnection().createStatement();
      }
     // Forwardif to(stmt handler== 
null || (stmt.getConnection() != getConnection())) {
   }	     throw  		       new IllegalStateException();
      } else {
      ResultSet rs connection = con; 
stmt.executeQuery(query);
      // }...
    } catch (SQLException e) {
       };

  public static Connection getConnection() {// Forward to handler
    }
    return// connectionHolder.get();...
  }

  public static void shutdownConnectionmain(String[] args) throws InterruptedException {
 // Allows client toDBConnector closeconnector connection= anytime
    connectionHolder.set(nullnew DBConnector("suitable query");
   }

 Thread thread public= voidnew runThread(connector) {;
    Connection dbConnection = getConnectionthread.start();
    Statement stmtThread.sleep(5000);
    try {
      stmt = dbConnection.createStatement();		
      ResultSet rs = stmt.executeQuery(query);
      // ...
    } catch (SQLException e) {
      // Forward to handler	 
    }    
    // ...
  }

  public static void main(String[] args) throws InterruptedException {
    DBConnector connector = new DBConnector("suitable query");
    Thread thread = new Thread(connector);
    thread.start();
    Thread.sleep(5000);
    connector.shutdown();
  }
}
{code}


h2. Risk Assessment

Failing to provide facilities for thread shutdown can cause non-responsiveness and denial of service.

|| Rule || Severity || Likelihood || Remediation Cost || Priority || Level ||
| CON24- J | low | probable | medium | {color:green}{*}P4{*}{color} | {color:green}{*}L3{*}{color} |



h3. Automated Detection

TODO



h3. Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the [CERT website|https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+KEYWORDS+contains+CON24-J].

h2. References

\[[API 06|AA. Java References#API 06]\] Class Thread, method {{stop}}, interface ExecutorService
\[[Darwin 04|AA. Java References#Darwin 04]\] 24.3 Stopping a Thread
\[[JDK7 08|AA. Java References#JDK7 08]\] Concurrency Utilities, More information: Java Thread Primitive Deprecation 
\[[JPL 06|AA. Java References#JPL 06]\] 14.12.1. Don't stop and 23.3.3. Shutdown Strategies
\[[JavaThreads 04|AA. Java References#JavaThreads 04]\] 2.4 Two Approaches to Stopping a Thread
\[[Goetz 06|AA. Java References#Goetz 06]\] Chapter 7: Cancellation and shutdown

----
[!The CERT Sun Microsystems Secure Coding Standard for Java^button_arrow_left.png!|CON23-J. Address the shortcomings of the Singleton design pattern]&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;[!The CERT Sun Microsystems Secure Coding Standard for Java^button_arrow_up.png!|11. Concurrency (CON)]&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;[!The CERT Sun Microsystems Secure Coding Standard for Java^button_arrow_right.png!|CON25-J. Ensure atomicity when reading and writing 64-bit values]

connector.cancelStatement();
  }
}

The Statement.cancel() method cancels the query, provided the database management system (DBMS) and driver both support cancellation. It is impossible to cancel the query if either the DBMS or the driver fail to support cancellation.

According to the Java API, Interface Statement documentation [API 2014]

By default, only one ResultSet object per Statement object can be open at the same time. As a result, if the reading of one ResultSet object is interleaved with the reading of another, each must have been generated by different Statement objects.

This compliant solution ensures that only one ResultSet is associated with the Statement belonging to an instance, and, consequently, only one thread can access the query results.

Risk Assessment

Failure to provide facilities for thread termination can cause nonresponsiveness and DoS.

Rule

Severity

Likelihood

Remediation Cost

Priority

Level

THI04-J

Low

Probable

Medium

P4

L3

Bibliography

[API 2014]

Class Thread
Interface ExecutorService
Interface Statement

[Darwin 2004]

Section 24.3, "Stopping a Thread"

[Goetz 2006]

Chapter 7, "Cancellation and Shutdown"

[JavaThreads 2004]

Section 2.4, "Two Approaches to Stopping a Thread"

[JDK7 2008]

Java Thread Primitive Deprecation

[JPL 2006]

Section 14.12.1, "Don't Stop"
Section 23.3.3, "Shutdown Strategies"

 

...

Image Added Image Added Image Added