Mutexes are often used for critical resources to prevent multiple threads accessing them from causing a data race by accessing shared resources at the same time. Sometimes, when locking mutexes, deadlock will happen when multiple threads hold each other's lock, and the program come to a halt. There are four requirements for deadlockconsequently deadlocks. Four conditions are required for deadlock to occur:
- Mutual Exclusionexclusion
- Hold and Waitwait
- No Preemptionpreemption
- Circular Waitwait
Deadlock needs Each deadlock requires all four . Therefore, to prevent deadlock one just need to avoid conditions, so preventing deadlock requires preventing any one of the four . The advice of this guideline conditions. One simple solution is to require locking lock the mutexes in a predefined order to prevent , which prevents circular wait.
Noncompliant Code Example
Based on The behavior of this noncompliant code example depends on the runtime environment and the scheduler on the operating system, the following code will have different behaviors. However, with proper timing, the main() will deadlock when running thr1 and thr2 in which thr1 tries platform's scheduler. The program is susceptible to deadlock if thread thr1
attempts to lock ba2
's mutex while thr2 tries at the same time thread thr2
attempts to lock on ba1
's mutex in the deposit()
function and the program will not progress.
Code Block | ||||
---|---|---|---|---|
| ||||
#include <stdio<stdlib.h> #include <pthread<threads.h> #include <stdlib.h> typedef struct { int balance; pthread_mutexmtx_t balance_mutex; } bank_account; typedef struct { bank_account *from; bank_account *to; int amount; } deposit_thr_argstransaction; /* return negative on error */ intvoid create_bank_account(bank_account **ba, int initial_amount) { int ret; bank_account *nba = (bank_account *)malloc( sizeof(bank_account) ); if (nba == NULL) { return -1;/* Handle error */ } nba->balance = initial_amount; if (thrd_success ret != pthread_mutexmtx_init(&nba->balance_mutex, NULL);mtx_plain)) { if (ret) exit(ret); /* Handle error */ } *ba = nba; return 0; } voidint *deposit(void *ptr) { deposit_thr_argstransaction *args = (deposit_thr_argstransaction *)ptr; pthread_mutexif (thrd_success != mtx_lock(&(args->from->balance_mutex)); { /* Handle error */ } /* notNot enough balance to transfer */ if (args->from->balance < args->amount) { if pthread_mutex(thrd_success != mtx_unlock(&(args->from->balance_mutex)); { /* Handle error */ } return NULL;-1; /* Indicate error */ } if pthread_mutex(thrd_success != mtx_lock(&(args->to->balance_mutex)); { /* Handle error */ } args->from->balance -= args->amount; args->to->balance += args->amount; if pthread_mutex(thrd_success != mtx_unlock(&(args->from->balance_mutex)); pthread_mutex { /* Handle error */ } if (thrd_success != mtx_unlock(&(args->to->balance_mutex)); { /* Handle error */ } free(ptr); return NULL0; } int main(void) { pthreadthrd_t thr1, thr2; inttransaction err*arg1; transaction *arg2; bank_account *ba1,; bank_account *ba2; err = create_bank_account(&ba1, 1000); if (err < 0) exit(err); err = create_bank_account(&ba2, 1000); if (err < 0) arg1 = exit(err); deposit_thr_args *arg1 = (transaction *)malloc(sizeof(deposit_thr_argstransaction)); if (arg1 == NULL) { exit(-1); deposit_thr_args *arg2 = /* Handle error */ } arg2 = (transaction *)malloc(sizeof(deposit_thr_argstransaction)); if (arg2 == NULL) { /* Handle exit(-1); error */ } arg1->from = ba1; arg1->to = ba2; arg1->amount = 100; arg2->from = ba2; arg2->to = ba1; arg2->amount = 100; /* performPerform the depositdeposits */ err if (thrd_success != pthreadthrd_create(&thr1, NULL, deposit, (void *)arg1)); { if (err) exit(err); err = pthread/* Handle error */ } if (thrd_success != thrd_create(&thr2, NULL, deposit, (void *)arg2)); { if (err) /* Handle exit(err); error */ pthread_exit(NULL); } return 0; } |
Compliant Solution
The This compliant solution to the deadlock problem is to lock in predefined order eliminates the circular wait condition by establishing a predefined order for locking in the deposit()
function. In the following example, each Each thread will lock based on lock on the basis of the bank_account
's id defined in the struct initialization. This way circular wait problem is avoided and when one thread requires a lock will guarantee it will require the next lock ID, which is set when the bank_account struct
is initialized.
Code Block | ||||
---|---|---|---|---|
| ||||
#include <stdlib.h> #include <threads.h> typedef struct { int balance; pthread_mutexmtx_t balance_mutex; /* Should not change after initialization */ unsigned int id; /* read only and should never be changed */ } bank_account } bank_account; typedef struct { bank_account *from; bank_account *to; int amount; } transaction; unsigned int global_id = 1; /* return negative on error */ intvoid create_bank_account(bank_account **ba, int initial_amount) { int ret; bank_account *nba = (bank_account *)malloc( sizeof(bank_account) ); if (nba == NULL) { /* return -1;Handle error */ } nba->balance = initial_amount; ret = pthread_mutexif (thrd_success != mtx_init(&nba->balance_mutex, NULL); if (ret) exit(ret);mtx_plain)) { /* Handle error */ } nba->id = global_id++; *ba = nba; return 0; } voidint *deposit(void *ptr) { deposit_thr_argstransaction *args = (deposit_thr_args *)ptrtransaction *)ptr; int result = -1; mtx_t *first; mtx_t *second; if (args->from->id == args->to->id) { return NULL; -1; /* Indicate error */ } /* ensureEnsure proper ordering for locking */ if (args->from->id < args->to->id) { pthread_mutex_lock(&( first = &args->from->balance_mutex)); second = pthread_mutex_lock(&(args->to->balance_mutex)); } else { pthread_mutex_lock(&(first = &args->to->balance_mutex)); second = pthread_mutex_lock(&(args->from->balance_mutex));; } if (thrd_success != mtx_lock(first)) { /* Handle error */ } if (thrd_success != mtx_lock(second)) { /* Handle error */ } /* notNot enough balance to transfer */ if (args->from->balance <>= args->amount) { pthread_mutex_unlock(&(args->from->balance_mutex)) -= args->amount; pthread_mutex_unlock(&(args->to->balance_mutex)) += args->amount; result return= NULL0; } args->from->balance -= args->amount; args->to->balance += args->amount; pthread_mutex_unlock(&(args->from->balance_mutex)); pthread_mutex_unlock(&(args->to->balance_mutex)); return NULL; } |
Risk Assessment
if (thrd_success != mtx_unlock(second)) {
/* Handle error */
}
if (thrd_success != mtx_unlock(first)) {
/* Handle error */
}
free(ptr);
return result;
} |
Risk Assessment
Deadlock prevents multiple threads from progressing, halting program execution. A Deadlock causes multiple threads to not be able to progress and thus halt the executing program. This is a potential denial-of-service attack when is possible if the attacker can force create the conditions for deadlock situations. It's probable that deadlock will occur in multi-thread programs that manage multiple resources. Some automation for detecting deadlock can be implemented in which the detector can try different inputs and wait for a timeout. The fixes can be done manually.
Recommendation | Severity | Likelihood | Remediation Cost | Level | Priority |
---|---|---|---|---|---|
POS43-C | low | probable | medium | L3 | P3 |
Other Languages
.
Rule | Severity | Likelihood | Remediation Cost | Priority | Level |
---|---|---|---|---|---|
CON35-C | Low | Probable | Medium | P4 | L3 |
Related Vulnerabilities
Search for vulnerabilities resulting from the violation of this rule on the CERT website.
Automated Detection
Tool | Version | Checker | Description | ||||||
---|---|---|---|---|---|---|---|---|---|
Astrée |
| deadlock | Supported by sound analysis (deadlock alarm) | ||||||
CodeSonar |
| CONCURRENCY.LOCK.ORDER | Conflicting lock order | ||||||
Coverity |
| ORDER_REVERSAL | Fully implemented | ||||||
Cppcheck Premium |
| premium-cert-con35-c | Partially implemented | ||||||
Helix QAC |
| C1772, C1773 | |||||||
Klocwork |
| CONC.DL | |||||||
Parasoft C/C++test |
| CERT_C-CON35-a | Do not acquire locks in different order | ||||||
PC-lint Plus |
| 2462 | Fully supported | ||||||
Polyspace Bug Finder |
| CERT C: Rule CON35-C | Checks for deadlock (rule partially covered) |
Related Guidelines
Key here (explains table format and definitions)
Taxonomy | Taxonomy item | Relationship |
---|---|---|
CERT Oracle Secure Coding Standard for Java | LCK07 |
...
References
Prior to 2018-01-12: CERT: Unspecified Relationship |
...
\[[pthread_mutex | https://computing.llnl.gov/tutorials/pthreads/#Mutexes]\] pthread_mutex tutorial
\[[MITRE CWE:764 | http://cwe.mitre.org/data/definitions/764.html]\] Multiple Locks of Critical Resources
\[[Bryant 03|AA. References#Bryant 03]\] Chapter 13, Concurrent Programming Wiki Markup