Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

Mutexes are often used for critical resources to prevent multiple threads from accessing them causing a data race by accessing shared resources at the same time. Sometimes, when locking mutexes, deadlock will happen when multiple threads hold each other's lock, and the program consequently comes to a halt. There are four requirements for deadlockdeadlocks. Four conditions are required for deadlock to occur:

  • Mutual Exclusionexclusion
  • Hold and Waitwait
  • No Preemptionpreemption
  • Circular Waitwait

Deadlock needs Each deadlock requires all four conditions. Therefore, to prevent deadlock, prevent so preventing deadlock requires preventing any one of the four conditions from being satisfied. This guideline recommends locking . One simple solution is to lock the mutexes in a predefined order to prevent , which prevents circular wait.

Noncompliant Code Example

The following code has behavior which is dependend behavior of this noncompliant code example depends on the runtime environment and the platform's scheduler. However, with proper timing, the main() function will deadlock when running thr1 and thr2 in which thr1 tries The program is susceptible to deadlock if thread thr1 attempts to lock ba2's mutex while thr2 tries at the same time thread thr2 attempts to lock on ba1's mutex in the deposit() function and the program will not progress.

Code Block
bgColor#ffcccc
langc
#include <stdlib.h>
#include <threads.h>
 
typedef struct {
  int balance;
  pthread_mutexmtx_t balance_mutex; 
} bank_account;

typedef struct {
  bank_account *from;
  bank_account *to;
  int amount;
} deposit_thr_argstransaction;

void create_bank_account(bank_account **ba,
                         int initial_amount) {
  int result;
  bank_account *nba = (bank_account *)malloc(
    sizeof(bank_account)
  );
  if (nba == NULL) {
    /* Handle Errorerror */
  }

  nba->balance = initial_amount;
  result = pthread_mutexif (thrd_success
      != mtx_init(&nba->balance_mutex, NULL);
  if (resultmtx_plain)) {
    /* Handle Errorerror */
  }

  *ba = nba;
}


voidint *deposit(void *ptr) {
  int result;
  deposit_thr_argstransaction *args = (deposit_thr_argstransaction *)ptr;

  if ((resultthrd_success != pthread_mutexmtx_lock(&(args->from->balance_mutex))) != 0) {
    /* Handle Errorerror */
  }

  /* notNot enough balance to transfer */
  if (args->from->balance < args->amount) {
    if ((result thrd_success
        != pthreadmtx_mutex_unlock(&(args->from->balance_mutex))) != 0) {
      /* Handle Errorerror  */
    }
    return NULL;-1; /* Indicate error */
  }

  if ((resultthrd_success != pthreadmtx_mutex_lock(&(args->to->balance_mutex))) != 0) {
    /* Handle Errorerror */
  }

  args->from->balance -= args->amount;
  args->to->balance += args->amount;

  if ((result = pthread_mutexthrd_success
      != mtx_unlock(&(args->from->balance_mutex))) != 0) {
    /* Handle Errorerror */
  }

  if ((result thrd_success
      != pthreadmtx_mutex_unlock(&(args->to->balance_mutex))) != 0) {
    /* Handle Errorerror */
  }


  free(ptr);
  return NULL0;
}


int main(void) {

  pthreadthrd_t thr1, thr2;
  inttransaction result*arg1;
  transaction *arg2;
  bank_account *ba1;
  bank_account *ba2;

  create_bank_account(&ba1, 1000);
  create_bank_account(&ba2, 1000);

  deposit_thr_args *arg1 = (transaction *)malloc(sizeof(deposit_thr_argstransaction));
  if (arg1 == NULL) {
    /* Handle Errorerror */
  }
  deposit_thr_args *arg2 = (transaction *)malloc(sizeof(deposit_thr_argstransaction));
  if (arg2 == NULL) {
    /* Handle Errorerror */
  }

  arg1->from = ba1;
  arg1->to = ba2;
  arg1->amount = 100;

  arg2->from = ba2;
  arg2->to = ba1;
  arg2->amount = 100;

  /* performPerform the deposits */
  if ((result thrd_success
     != pthreadthrd_create(&thr1, NULL, deposit, (void *)arg1)) != 0) {
    /* Handle Errorerror */
  }
  if ((result thrd_success
      != pthreadthrd_create(&thr2, NULL, deposit, (void *)arg2)) != 0) {
    /* Handle Errorerror */
  }

  pthread_exit(NULL);
  return 0;
}
 

Compliant Solution

The This compliant solution to the deadlock problem is to use eliminates the circular wait condition by establishing a predefined order for the locks locking in the deposit() function. In the following compliant solution, each Each thread will lock based on the id of lock on the basis of the bank_account id defined in the struct initialization. This prevents the circular wait problem. ID, which is set when the bank_account struct is initialized.

Code Block
bgColor#ccccff
langc
#include <stdlib.h>
#include <threads.h>
 
typedef struct {
  int balance;
  pthreadmtx_mutex_t balance_mutex;
 
  /* Should not change after initialization */
  unsigned int id;
} bank_account;

typedef /*struct should{
 never be changed after initialized */
} bank_accountbank_account *from;
  bank_account *to;
  int amount;
} transaction;

unsigned int global_id = 1;

void create_bank_account(bank_account **ba,
                         int initial_amount) {
  int result;
  bank_account *nba = (bank_account *)malloc(
    sizeof(bank_account)
  );
  if (nba == NULL) {
    /* Handle Errorerror */
  }

  nba->balance = initial_amount;
  result = pthread_mutex if (thrd_success
      != mtx_init(&nba->balance_mutex, NULL);
  if (result != 0mtx_plain)) {
    /* Handle Errorerror */
  }

  nba->id = global_id++;
  *ba = nba;
}


voidint *deposit(void *ptr) {
  deposit_thr_argstransaction *args = (deposit_thr_argstransaction *)ptr;
  int result = -1;
  mtx_t *first;
  mtx_t *second;

  if (args->from->id == args->to->id) 
		return;

{
    return -1; /* Indicate error */
  }

  /* ensureEnsure proper ordering for locking */
  if (args->from->id < args->to->id) {
    if ((resultfirst = pthread_mutex_lock(&(args->from->balance_mutex))) != 0) {;
    second  /* Handle Error */= &args->to->balance_mutex;
  } else }{
    iffirst ((result = pthread_mutex_lock(&(args->to->balance_mutex))) != 0) {;
    second  /* Handle Error */
  = &args->from->balance_mutex;
  }
  } else {
    if ((resultthrd_success != pthread_mutexmtx_lock(&(args->to->balance_mutex)first)) != 0) {
      /* Handle Errorerror */
    }
    if ((resultthrd_success != pthreadmtx_mutex_lock(&(args->from->balance_mutexsecond))) != 0) {
      /* Handle Errorerror */
    }
  }

  /* notNot enough balance to transfer */
  if (args->from->balance <>= args->amount) {
    if ((result = pthread_mutex_unlock(&(args->from->balance_mutex))) !-= 0) {
  args->amount;
    /* Handle Error */
    }
    if ((result = pthread_mutex_unlock(&(args->to->balance_mutex))) != 0) {
      /* Handle Error */
    }
    return+= args->amount;
  }

  args->from->balanceresult -= args->amount0;
  args->to->balance += args->amount;}

  if ((resultthrd_success != pthreadmtx_mutex_unlock(&(args->from->balance_mutexsecond))) != 0) {
    /* Handle Errorerror */
  }
  if ((resultthrd_success != pthread_mutexmtx_unlock(&(args->to->balance_mutexfirst))) != 0) {
    /* Handle Errorerror */
  }


  free(ptr);
  return result;
}
 

Risk Assessment

Deadlock causes prevents multiple threads to become unable to progress and thus halts the executing program. This is a potential from progressing, halting program execution. A denial-of-service attack because is possible if the attacker can force deadlock situations. It is likely for deadlock to occur in multi-threaded programs that manage multiple shared resources. create the conditions for deadlock.

Rule

Recommendation

Severity

Likelihood

Remediation Cost

Priority

Level

Priority

POS43-C

low

probable

medium

L3

P3

Other Languages

...

CON35-C

Low

Probable

Medium

P4

L3

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

Automated Detection

ToolVersionCheckerDescription
Astrée
Include Page
Astrée_V
Astrée_V
deadlockSupported by sound analysis (deadlock alarm)
CodeSonar
Include Page
CodeSonar_V
CodeSonar_V
CONCURRENCY.LOCK.ORDERConflicting lock order
Coverity
Include Page
Coverity_V
Coverity_V
ORDER_REVERSALFully implemented
Cppcheck Premium

Include Page
Cppcheck Premium_V
Cppcheck Premium_V

premium-cert-con35-cPartially implemented
Helix QAC

Include Page
Helix QAC_V
Helix QAC_V

C1772, C1773
Klocwork
Include Page
Klocwork_V
Klocwork_V

CONC.DL
CONC.NO_UNLOCK


Parasoft C/C++test
Include Page
Parasoft_V
Parasoft_V
CERT_C-CON35-a

Do not acquire locks in different order

PC-lint Plus

Include Page
PC-lint Plus_V
PC-lint Plus_V

2462

Fully supported

Polyspace Bug Finder

Include Page
Polyspace Bug Finder_V
Polyspace Bug Finder_V

CERT C: Rule CON35-C

Checks for deadlock (rule partially covered)

Related Guidelines

Key here (explains table format and definitions)

Taxonomy

Taxonomy item

Relationship

CERT Oracle Secure Coding Standard for JavaLCK07

...

...

Prior to 2018-01-12: CERT: Unspecified Relationship

  

...

Image Added Image Added

References

Wiki Markup
\[[pthread_mutex | https://computing.llnl.gov/tutorials/pthreads/#Mutexes]\]  pthread_mutex tutorial
\[[MITRE CWE:764 | http://cwe.mitre.org/data/definitions/764.html]\] Multiple Locks of Critical Resources
\[[Bryant 03|AA. References#Bryant 03]\] Chapter 13, Concurrent Programming

POS42-C. Declare objects shared between POSIX threads with appropriate storage durations.      50. POSIX (POS)      Image Modified