Classes that require special handling during object serialization and deserialization must implement special methods with exactly the following signatures [API 20062014]:
Code Block |
---|
private void writeObject(java.io.ObjectOutputStream out) throws IOException; private void readObject(java.io.ObjectInputStream in) throws IOException, ClassNotFoundException; private void readObjectNoData() throws ObjectStreamException; |
According to the Serialization Specification \[[Sun 2006|AA. Bibliography#Sun 06]\], {{readResolve()}} and {{writeReplace()}} method Note that these methods must be declared private for any serializable class. Serializable classes may also implement the Wiki Markup readResolve()
and writeReplace()
methods.
According to the Serialization Specification [Sun 2006], readResolve()
and writeReplace()
method documentation:
For Serializable and Externalizable classes, the
readResolve
method allows a class to replace/resolve the object read from the stream before it is returned to the caller. By implementing thereadResolve
method, a class can directly control the types and instances of its own instances being deserialized.For Serializable and Externalizable classes, the
writeReplace
method allows a class of an object to nominate its own replacement in the stream before the object is written. By implementing thewriteReplace
method, a class can directly control the types and instances of its own instances being serialized.
It is possible to add any access-specifier to the readResolve()
and writeReplace()
methods. However, if they these methods are declared private, extending classes cannot invoke or override them. Similarly, if either of these methods is are declared static, extending classes cannot override the method, these methods; they can only hide itthem.
Deviating from these method signatures produces a method that is not invoked during object serialization or deserialization. Such methods, especially if declared public, might be accessible to untrusted code.
Unlike most interfaces, Serializable
does not define the method signatures it requires because . Interfaces allow only public fields and methods, whereas readObject()
, readObjectNoData
, and writeObject()
are ()
must be declared private. Similarly, the Serializable
interface does not prevent readResolve()
and writeReplace()
methods from being declared static, public, or private. Consequently, the Java compiler will not serialization mechanism fails to let the compiler identify an incorrect method signature for any of these methods.
Noncompliant Code Example (readObject()
, writeObject()
)
This noncompliant code example shows a class Ser
with a private constructor, indicating that code external to the class should not be able unable to create instances of it. The class implements java.io.Serializable
and defines public readObject()
and writeObject()
methods. Consequently, untrusted code can obtain the reconstituted objects by using readObject()
, and can write to the stream by using writeObject()
.
Code Block | ||
---|---|---|
| ||
public class Ser implements Serializable { private final long serialVersionUID = 123456789; private Ser() { // initializeInitialize } public static void writeObject(final ObjectOutputStream stream) throws IOException { stream.defaultWriteObject(); } public static void readObject(final ObjectInputStream stream) throws throws IOException, ClassNotFoundException { stream.defaultReadObject(); } } |
Similarly, omitting the static
keyword is insufficient to make this example secure; the JVM will fail to Note that there are two things wrong with the signatures of writeObject()
and readObject()
in this Noncompliant Code Example: (1) the method is declared public
instead of private
, and (2) the method is declared static
instead of non-static
. Since the method signatures do not exactly match the required signatures, the JVM will not detect the two methods, resulting in failure to use the custom serialized form.
Compliant Solution (readObject()
, writeObject()
)
This compliant solution declares the readObject()
and writeObject()
methods private and non-static nonstatic to limit their accessibility. :
Code Block | ||
---|---|---|
| ||
private void writeObject(final ObjectOutputStream stream) throws IOException { stream.defaultWriteObject(); } private void readObject(final ObjectInputStream stream) throws throws IOException, ClassNotFoundException { stream.defaultReadObject(); } |
Reducing the accessibility also prevents malicious overriding of the two methods.
Noncompliant Code Example (readResolve()
, writeReplace()
)
This noncompliant code example declares the readResolve()
and writeReplace()
methods as private.:
Code Block | ||
---|---|---|
| ||
class Extendable implements Serializable {
private Object readResolve() {
// ...
}
private Object writeReplace() {
// ...
}
}
|
Noncompliant Code Example (readResolve()
, writeReplace()
)
This noncompliant code example declares the readResolve()
and writeReplace()
methods as static.:
Code Block | ||
---|---|---|
| ||
class Extendable implements Serializable {
protected static Object readResolve() {
// ...
}
protected static Object writeReplace() {
// ...
}
}
|
Compliant Solution (readResolve()
, writeReplace()
)
This compliant solution declares the two methods protected while eliminating the static
keyword , so that subclasses can inherit them.:
Code Block | ||
---|---|---|
| ||
class Extendable implements Serializable {
protected Object readResolve() {
// ...
}
protected Object writeReplace() {
// ...
}
}
|
Risk Assessment
Deviating from the proper signatures of serialization methods can lead to unexpected behavior. Failure to limit the accessibility of the readObject()
and writeObject()
methods can leave code vulnerable to untrusted invocations. Declaring readResolve()
and writeReplace()
methods to be static or private can force subclasses to silently ignore them, while declaring them public allows them to be invoked by untrusted code.
Rule | Severity | Likelihood | Remediation Cost | Priority | Level |
---|---|---|---|---|---|
SER01-J |
High |
Likely |
Low | P27 | L1 |
Related Vulnerabilities
...
Automated Detection
Tool | Version | Checker | Description | ||||||
---|---|---|---|---|---|---|---|---|---|
CodeSonar |
| JAVA.CLASS.SER.ND | Serialization Not Disabled (Java) | ||||||
Coverity | 7.5 | UNSAFE_DESERIALIZATION | Implemented | ||||||
Parasoft Jtest |
| CERT.SER01.ROWO | Ensure that the 'readObject()' and 'writeObject()' methods have the correct signature | ||||||
PVS-Studio |
| V6075 | |||||||
SonarQube |
| S2061 | Custom serialization method signatures should meet requirements |
Related Guidelines
Bibliography
...
[API |
AA. Bibliography#API 06]]
Serializable
]]></ac:plain-text-body></ac:structured-macro>
<ac:structured-macro ac:name="unmigrated-wiki-markup" ac:schema-version="1" ac:macro-id="6f1d9b92-a60e-4964-b26e-3b9697f2d6e7"><ac:plain-text-body><![CDATA[
[[Sun 2006
AA. Bibliography#Sun 06]]
"Serialization specification"
]]></ac:plain-text-body></ac:structured-macro>
<ac:structured-macro ac:name="unmigrated-wiki-markup" ac:schema-version="1" ac:macro-id="d048cd43-5159-4db1-a520-fe45a498abf2"><ac:plain-text-body><![CDATA[
[[Ware 2008
AA. Bibliography#Ware 08]]
]]></ac:plain-text-body></ac:structured-macro>
2014] | |
[Sun 2006] | Serialization Specification |
...
SER00-J. Maintain serialization compatibility during class evolution 13. Serialization (SER) SER02-J. Sign and seal sensitive objects before sending them outside a trust boundary