Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

This noncompliant code example generates a sequence of 10 pseudorandom numbers using the Mersenne Twister engine. No matter how many times this code is executed, it always produces the same sequence because the default seed is used for the engine:.

Code Block
bgColor#FFCCCC
langcpp
#include <random>
#include <iostream>

void f() {
  std::mt19937 engine;
  
  for (int i = 0; i < 10; ++i) {
    std::cout << engine() << ", ";
  }
}

The output is as follows:of this example follows.

Code Block
1st run: 3499211612, 581869302, 3890346734, 3586334585, 545404204, 4161255391, 3922919429, 949333985, 2715962298, 1323567403, 
2nd run: 3499211612, 581869302, 3890346734, 3586334585, 545404204, 4161255391, 3922919429, 949333985, 2715962298, 1323567403, 
...
nth run: 3499211612, 581869302, 3890346734, 3586334585, 545404204, 4161255391, 3922919429, 949333985, 2715962298, 1323567403, 

...

This noncompliant code example improves over the previous noncompliant code example by seeding the random number generation engine with the current time. However, this approach is still unsuitable when an attacker can control the time at which the seeding is executed. Predictable seed values can result in exploits when the subverted PRNG is used.

...

Code Block
bgColor#ccccff
langcpp
#include <random>
#include <iostream>

void f() {
  std::random_device dev;
  std::mt19937 engine(dev());
  
  for (int i = 0; i < 10; ++i) {
    std::cout << engine() << ", ";
  }
} 

The output of this example follows.

Code Block

/*
output:
1st run: 3921124303, 1253168518, 1183339582, 197772533, 83186419, 2599073270, 3238222340, 101548389, 296330365, 3335314032, 
2nd run: 2392369099, 2509898672, 2135685437, 3733236524, 883966369, 2529945396, 764222328, 138530885, 4209173263, 1693483251, 
3rd run: 914243768, 2191798381, 2961426773, 3791073717, 2222867426, 1092675429, 2202201605, 850375565, 3622398137, 422940882,
...
*/

Risk Assessment

Rule

Severity

Likelihood

Remediation Cost

Priority

Level

MSC51-CPP

Medium

Likely

Low

P18

L1

Automated Detection

Tool

Version

Checker

Description

   

Astrée

Include Page
Astrée_V
Astrée_V

default-construction
Partially checked
Axivion Bauhaus Suite

Include Page
Axivion Bauhaus Suite_V
Axivion Bauhaus Suite_V

CertC++-MSC51
CodeSonar
Include Page
CodeSonar_V
CodeSonar_V

HARDCODED.SEED
MISC.CRYPTO.TIMESEED

Hardcoded Seed in PRNG
Predictable Seed in PRNG

Helix QAC

Include Page
Helix QAC_V
Helix QAC_V

C++5041
Klocwork
Include Page
Klocwork_V
Klocwork_V
AUTOSAR.STDLIB.RANDOM.NBR_GEN_DEFAULT_INIT
Polyspace Bug Finder

Include Page
Polyspace Bug Finder_V
Polyspace Bug Finder_V

CERT C++: MSC51-CPP

Checks for:

  • Deterministic random output from constant seed
  • Predictable random output from predictable seed

Rule partially covered.

Parasoft C/C++test

Include Page
Parasoft_V
Parasoft_V

CERT_CPP-MSC51-a

Properly seed pseudorandom number generators

PVS-Studio

Include Page
PVS-Studio_V
PVS-Studio_V

V1057
RuleChecker
Include Page
RuleChecker_V
RuleChecker_V
default-construction
Partially checked
 

Related Vulnerabilities

Using a predictable seed value, such as the current time, result in numerous vulnerabilities, such as the one described by CVE-2008-1637.

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

Related Guidelines

SEI CERT C Coding StandardMSC32-C. Properly seed pseudorandom number generators
MITRE CWE

CWE-327, Use of a Broken or Risky Cryptographic Algorithm

CWE-330, Use of Insufficiently Random Values

CWE-337, Predictable Seed in PRNG

Bibliography

[ISO/IEC 9899:2011]Subclause 7.22.2, "Pseudo-random Sequence Generation Functions"
[ISO/IEC 14882-2014]Subclause 26.5, "Random Number Generation"

...


...

Image Modified Image Modified Image Modified