Mutexes are often used for critical resources to prevent multiple threads from accessing them causing a data race by accessing shared resources at the same time. Sometimes, when locking mutexes, deadlock will happen when multiple threads hold each other's lock, and the program consequently comes to a halt. There are four requirements for deadlockdeadlocks. Four conditions are required for deadlock to occur:
- Mutual Exclusionexclusion
- Hold and Waitwait
- No Preemptionpreemption
- Circular Waitwait
Deadlock needs Each deadlock requires all four conditions. Therefore, to prevent deadlock, prevent so preventing deadlock requires preventing any one of the four conditions from being satisfied. This guideline recommends locking . One simple solution is to lock the mutexes in a predefined order to prevent , which prevents circular wait.
Noncompliant Code Example
The following code has behavior which is dependent behavior of this noncompliant code example depends on the runtime environment and the platform's scheduler. However, with proper timing, the main()
function will deadlock when running thr1
and thr2
, where thr1
tries The program is susceptible to deadlock if thread thr1
attempts to lock ba2
's mutex , while thr2
tries at the same time thread thr2
attempts to lock on ba1
's mutex in the deposit()
function, and the program will not progress.
Code Block | ||||
---|---|---|---|---|
| ||||
#include <stdlib.h> #include <threads.h> typedef struct { int balance; pthread_mutexmtx_t balance_mutex; } bank_account; typedef struct { bank_account *from; bank_account *to; int amount; } deposit_thr_argstransaction; void create_bank_account(bank_account **ba, int initial_amount) { int result; bank_account *nba = (bank_account *)malloc( sizeof(bank_account) ); if (nba == NULL) { /* Handle Errorerror */ } nba->balance = initial_amount; result = pthread_mutex_if (thrd_success != mtx_init(&nba->balance_mutex, NULL); if (resultmtx_plain)) { /* Handle Errorerror */ } *ba = nba; } voidint *deposit(void *ptr) { int result; deposit_thr_args transaction *args = (deposit_thr_argstransaction *)ptr; if ((resultthrd_success != pthread_mutexmtx_lock(&(args->from->balance_mutex))) != 0) { /* Handle Errorerror */ } /* notNot enough balance to transfer */ if (args->from->balance < args->amount) { if ((result = pthread_mutexthrd_success != mtx_unlock(&(args->from->balance_mutex))) != 0) { /* Handle Error error */ } return NULL;-1; /* Indicate error */ } if ((resultthrd_success != pthreadmtx_mutex_lock(&(args->to->balance_mutex))) != 0) { /* Handle Errorerror */ } args->from->balance -= args->amount; args->to->balance += args->amount; if ((result = pthread_mutexthrd_success != mtx_unlock(&(args->from->balance_mutex))) != 0) { /* Handle Errorerror */ } if ((result = pthread_mutexthrd_success != mtx_unlock(&(args->to->balance_mutex))) != 0) { /* Handle Errorerror */ } free(ptr); return NULL0; } int main(void) { pthreadthrd_t thr1, thr2; inttransaction result*arg1; transaction *arg2; bank_account *ba1; bank_account *ba2; create_bank_account(&ba1, 1000); create_bank_account(&ba2, 1000); deposit_thr_args *arg1 = (transaction *)malloc(sizeof(deposit_thr_argstransaction)); if (arg1 == NULL) { /* Handle Errorerror */ } deposit_thr_args *arg2 = (transaction *)malloc(sizeof(deposit_thr_argstransaction)); if (arg2 == NULL) { /* Handle Errorerror */ } arg1->from = ba1; arg1->to = ba2; arg1->amount = 100; arg2->from = ba2; arg2->to = ba1; arg2->amount = 100; /* performPerform the deposits */ if ((result thrd_success != pthreadthrd_create(&thr1, NULL, deposit, (void *)arg1)) != 0) { /* Handle Errorerror */ } if ((result thrd_success != pthreadthrd_create(&thr2, NULL, deposit, (void *)arg2)) != 0) { /* Handle Errorerror */ } pthread_exit(NULL); return 0; } |
Compliant Solution
The This compliant solution to the deadlock problem is to use eliminates the circular wait condition by establishing a predefined order for the locks locking in the deposit()
function. In the following compliant solution, each Each thread will lock based on the id of lock on the basis of the bank_account
id defined in the struct initialization. This prevents the circular wait problem ID, which is set when the bank_account struct
is initialized.
Code Block | ||||
---|---|---|---|---|
| ||||
#include <stdlib.h> #include <threads.h> typedef struct { int balance; pthread_mutexmtx_t balance_mutex; /* Should not change after initialization */ unsigned int id; /* should never be changed after initialized */ } bank_account } bank_account; typedef struct { bank_account *from; bank_account *to; int amount; } transaction; unsigned int global_id = 1; void create_bank_account(bank_account **ba, int initial_amount) { int result; bank_account *nba = (bank_account *)malloc( sizeof(bank_account) ); if (nba == NULL) { /* Handle Errorerror */ } nba->balance = initial_amount; result = pthread_mutex if (thrd_success != mtx_init(&nba->balance_mutex, NULL); if (result != 0mtx_plain)) { /* Handle Errorerror */ } nba->id = global_id++; *ba = nba; } voidint *deposit(void *ptr) { deposit_thr_argstransaction *args = (deposit_thr_argstransaction *)ptr; int result = -1; mtx_t *first; mtx_t *second; if (args->from->id == args->to->id) return;{ return -1; /* Indicate error */ } /* ensureEnsure proper ordering for locking */ if (args->from->id < args->to->id) { if ((resultfirst = pthread_mutex_lock(&(args->from->balance_mutex))) != 0) {; second /* Handle Error */= &args->to->balance_mutex; } else }{ if ((resultfirst = pthread_mutex_lock(&(args->to->balance_mutex))) != 0) {; second /* Handle Error */= &args->from->balance_mutex; } } else { if ((resultthrd_success != pthread_mutexmtx_lock(&(args->to->balance_mutexfirst))) != 0) { /* Handle Errorerror */ } if ((resultthrd_success != pthread_mutexmtx_lock(&(args->from->balance_mutexsecond))) != 0) { /* Handle Errorerror */ } } /* notNot enough balance to transfer */ if (args->from->balance <>= args->amount) { if ((result = pthread_mutex_unlock(&(args->from->balance_mutex))) != 0) { /* Handle Error */ } -= args->amount; if ((result = pthread_mutex_unlock(&(args->to->balance_mutex))) != 0) { /* Handle Error */ } return+= args->amount; } args->from->balanceresult -= args->amount0; args->to->balance += args->amount;} if ((resultthrd_success != pthreadmtx_mutex_unlock(&(args->from->balance_mutexsecond))) != 0) { /* Handle Errorerror */ } if ((resultthrd_success != pthread_mutexmtx_unlock(&(args->to->balance_mutex))) != 0first)) { /* Handle Errorerror */ } free(ptr); return result; } |
Risk Assessment
Deadlock causes prevents multiple threads to become unable to progress, thus halting the executing program. This is a potential from progressing, halting program execution. A denial-of-service attack because is possible if the attacker can force deadlock situations. It is likely for deadlock to occur in multithreaded programs that manage multiple shared resources. create the conditions for deadlock.
Rule |
---|
Severity | Likelihood | Remediation Cost | Priority | Level |
---|
Priority
CON35-C | Low |
Probable |
Medium |
medium
L3
P3
Related Guidelines
P4 | L3 |
Related Vulnerabilities
Search for vulnerabilities resulting from the violation of this rule on the CERT website.
Automated Detection
Tool | Version | Checker | Description | ||||||
---|---|---|---|---|---|---|---|---|---|
Astrée |
| deadlock | Supported by sound analysis (deadlock alarm) | ||||||
CodeSonar |
| CONCURRENCY.LOCK.ORDER | Conflicting lock order | ||||||
Coverity |
| ORDER_REVERSAL | Fully implemented | ||||||
Cppcheck Premium |
| premium-cert-con35-c | Partially implemented | ||||||
Helix QAC |
| C1772, C1773 | |||||||
Klocwork |
| CONC.DL | |||||||
Parasoft C/C++test |
| CERT_C-CON35-a | Do not acquire locks in different order | ||||||
PC-lint Plus |
| 2462 | Fully supported | ||||||
Polyspace Bug Finder |
| CERT C: Rule CON35-C | Checks for deadlock (rule partially covered) |
Related Guidelines
Key here (explains table format and definitions)
...
Taxonomy | Taxonomy item | Relationship |
---|
...
MITRE CWE: CWE-764] Multiple Locks of Critical Resources
Bibliography
Wiki Markup |
---|
\[[pthread_mutex | https://computing.llnl.gov/tutorials/pthreads/#Mutexes]\] pthread_mutex tutorial
\[[Bryant 2003|AA. Bibliography#Bryant 03]\] Chapter 13, Concurrent Programming |
Prior to 2018-01-12: CERT: Unspecified Relationship |
...
14. Concurrency (CON) 49. Miscellaneous (MSC)