The C Standard, Annex J (184) [ISO/IEC 9899:2024], states that the behavior of a program is undefined when
The pointer argument to the
free
orrealloc
function does not match a pointer earlier returned by a memory management function, or the space has been deallocated by a call tofree
orrealloc
.
See also undefined behavior 179.
Freeing memory that is not allocated dynamically can lead to serious errors. The specific consequences of this error depend on the compiler, but they range from nothing to abnormal program termination. Regardless of the compiler, avoid calling result in heap corruption and other serious errors. Do not call free()
on anything a pointer other than a pointer one returned by a dynamic-standard memory allocation function, such as malloc()
, calloc()
, realloc()
, or reallocaligned_alloc()
.
A similar situation arises when realloc()
is supplied a pointer to non-dynamically allocated memory. The realloc()
function is used to resize a block of dynamic memory. If realloc()
is supplied a pointer to memory not allocated by a standard memory allocation function, such as malloc()
, the behavior is undefined. One consequence is that the program may terminate abnormally.
...
This rule does not apply to null pointers. The C Standard guarantees that if free()
is passed a null pointer, no action occurs.
Noncompliant Code Example
This non-compliant noncompliant code example sets c_str
to reference either dynamically allocated memory or a statically allocated string literal depending on the value of argc
. In either case, c_str
is passed as an argument to free()
. If anything other than dynamically allocated memory is referenced by c_str
, the call to free(c_str)
is erroneous.
Code Block | ||||
---|---|---|---|---|
| ||||
#include <stdlib.h> #include <string.h> #include <stdio.h> enum { MAX_ALLOCATION = 1000 }; int main(int argc, const char const *argv[]) { char *c_str = NULL; size_t len; if (argc == 2) { len = strlen(argv[1]) + 1; if (len > MAX_ALLOCATION) { /* Handle Errorerror */ } c_str = (char *)malloc(len); if (c_str == NULL) { /* Handle Allocationerror Error */ } strcpy(c_str, argv[1]); } else { c_str = "usage: $>a.exe [string]"; printf("%s\n", c_str); } /* ... */ free(c_str); return 0; } |
Compliant Solution
In the This compliant solution , the program has been modified to eliminate the eliminates the possibility of str
referencing non-dynamic memory when it is supplied c_str
referencing memory that is not allocated dynamically when passed to free()
.:
Code Block | ||||
---|---|---|---|---|
| ||||
#include <stdlib.h> #include <string.h> #include <stdio.h> enum { MAX_ALLOCATION = 1000 }; int main(int argc, const char const *argv[]) { char *c_str = NULL; size_t len; if (argc == 2) { len = strlen(argv[1]) + 1; if (len > MAX_ALLOCATION) { /* Handle Errorerror */ } c_str = (char *)malloc(len); if (c_str == NULL) { /* Handle Allocationerror Error */ } strcpy(c_str, argv[1]); } else { printf("%s\n", "usage: $>a.exe [string]"); return -1EXIT_FAILURE; } free(c_str); return 0; } |
Noncompliant Code Example (realloc()
)
In this noncompliant example, the pointer parameter to realloc()
, buf
, does not refer to dynamically allocated memory:
Code Block | ||||
---|---|---|---|---|
| ||||
#include <stdlib.h> enum { BUFSIZE = 256 }; void f(void) { char buf[BUFSIZE]; char *p = (char *)realloc(buf, 2 * BUFSIZE); if (p == NULL) { /* Handle ...error */ } } |
Compliant Solution (realloc()
)
In this compliant solution, buf
refers to dynamically allocated memory:
Code Block | ||||
---|---|---|---|---|
| ||||
#include <stdlib.h> enum { free(str); return 0; } |
Risk Assessment
BUFSIZE = 256 };
void f(void) {
char *buf = (char *)malloc(BUFSIZE * sizeof(char));
char *p = (char *)realloc(buf, 2 * BUFSIZE);
if (p == NULL) {
/* Handle error */
}
} |
Note that realloc()
will behave properly even if malloc()
failed, because when given a null pointer, realloc()
behaves like a call to malloc()
.
Risk Assessment
The consequences of this error depend on the implementation, but they range from nothing to arbitrary code execution if that memory is reused by malloc()
. Freeing or reallocating memory that was not dynamically allocated could lead to abnormal termination and denial-of-service attacks.
Rule | Severity | Likelihood | Remediation Cost | Priority | Level |
---|---|---|---|---|---|
MEM34-C |
High |
Likely |
Medium |
P18 |
L3
Automated Detection
...
L1 |
Automated Detection
Tool | Version | Checker | Description | ||||||
---|---|---|---|---|---|---|---|---|---|
Astrée |
| invalid-free | Fully checked | ||||||
Axivion Bauhaus Suite |
| CertC-MEM34 | Can detect memory deallocations for stack objects | ||||||
Clang |
| clang-analyzer-unix.Malloc | Checked by clang-tidy ; can detect some instances of this rule, but does not detect all | ||||||
CodeSonar |
| ALLOC.TM | Type Mismatch | ||||||
Compass/ROSE | Can detect some violations of this rule | ||||||||
| BAD_FREE | Identifies calls to | |||||||
Cppcheck |
| autovarInvalidDeallocation mismatchAllocDealloc | Partially implemented | ||||||
Cppcheck Premium |
| autovarInvalidDeallocation mismatchAllocDealloc | Partially implemented | ||||||
Helix QAC |
| DF2721, DF2722, DF2723 | |||||||
Klocwork |
| FNH.MIGHT FNH.MUST | |||||||
LDRA tool suite |
| 407 S, 483 S, 644 S, 645 S, 125 D | Partially implemented | ||||||
Parasoft C/C++test |
| CERT_C-MEM34-a | Do not free resources using invalid pointers | ||||||
Parasoft Insure++ | Runtime analysis | ||||||||
PC-lint Plus |
| 424, 673 | Fully supported | ||||||
Polyspace Bug Finder |
| Checks for:
Rule fully covered. | |||||||
PVS-Studio |
| V585, V726 | |||||||
RuleChecker |
| invalid-free | Partially checked | ||||||
TrustInSoft Analyzer |
| unclassified ("free expects a free-able address") | Exhaustively verified (see one compliant and one non-compliant example). |
Related Vulnerabilities
CVE-2015-0240 describes a vulnerability in which an uninitialized pointer is passed to TALLOC_FREE()
, which is a Samba-specific memory deallocation macro that wraps the talloc_free()
function. The implementation of talloc_free()
would access the uninitialized pointer, resulting in a remote exploit.
Search for vulnerabilities resulting from the violation of this rule on the CERT website.
References
Wiki Markup |
---|
\[[ISO/IEC 9899-1999|AA. C References#ISO/IEC 9899-1999]\] Section 7.20.3, "Memory management functions"
\[[Seacord 05|AA. C References#Seacord 05]\] Chapter 4, "Dynamic Memory Management" |
Related Guidelines
Key here (explains table format and definitions)
Taxonomy | Taxonomy item | Relationship |
---|---|---|
CERT C Secure Coding Standard | MEM31-C. Free dynamically allocated memory when no longer needed | Prior to 2018-01-12: CERT: Unspecified Relationship |
CERT C | MEM51-CPP. Properly deallocate dynamically allocated resources | Prior to 2018-01-12: CERT: Unspecified Relationship |
ISO/IEC TS 17961 | Reallocating or freeing memory that was not dynamically allocated [xfree] | Prior to 2018-01-12: CERT: Unspecified Relationship |
CWE 2.11 | CWE-590, Free of Memory Not on the Heap | 2017-07-10: CERT: Exact |
Bibliography
[ISO/IEC 9899:2024] | Subclause J.2, "Undefined Behavior" |
[Seacord 2013b] | Chapter 4, "Dynamic Memory Management" |
...
MEM33-C. Use the correct syntax for flexible array members 08. Memory Management (MEM)