Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

SQL injection vulnerabilities arise in applications where elements of a SQL query originate from an untrusted source. Without precautions, the untrusted data may maliciously alter the query, resulting in information leaks or data modification. The primary means of preventing SQL injection are sanitization and validation, which are typically implemented as parameterized queries and stored procedures.

Suppose a system authenticates users by issuing the following query to a SQL database. If the query returns any results, authentication succeeds; otherwise, authentication fails.

Code Block
languagesql
SELECT * FROM db_user WHERE username='<USERNAME>' AND 
                            password='<PASSWORD>'

Suppose an attacker can substitute arbitrary strings for <USERNAME> and <PASSWORD>. In that case, the authentication mechanism can be bypassed by supplying the following <USERNAME> with an arbitrary password:

Code Block
languagesql
validuser' OR '1'='1

The authentication routine dynamically constructs the following query:

Code Block
languagesql
SELECT * FROM db_user WHERE username='validuser' OR '1'='1' AND password='<PASSWORD>'

If validuser is a valid user name, this SELECT statement yields the validuser record in the table. The password is never checked because username='validuser' is true; consequently, the items after the OR are not tested. As long as the components after the OR generate a syntactically correct SQL expression, the attacker is granted the access of validuser.

Similarly, an attacker could supply the following string for <PASSWORD> with an arbitrary username:

Code Block
languagesql
' OR '1'='1

producing the following query:

Code Block
languagesql
SELECT * FROM db_user WHERE username='<USERNAME>' AND password='' OR '1'='1'

'1'='1' always evaluates to true, causing the query to yield every row in the database. In this scenario, the attacker would be authenticated without needing a valid username or password.

Noncompliant Code Example

This noncompliant code example shows JDBC code to authenticate a user to a system. The password is passed as a char array, the database connection is created, and then the passwords are hashed.

Unfortunately, this code example permits a SQL injection attack by incorporating the unsanitized input argument username into the SQL command, allowing an attacker to inject validuser' OR '1'='1. The password argument cannot be used to attack this program because it is passed to the hashPassword() function, which also sanitizes the input.

Code Block
bgColor#FFcccc
languagejava
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;

class Login {
  public Connection getConnection() throws SQLException {
    DriverManager.registerDriver(new
            com.microsoft.sqlserver.jdbc.SQLServerDriver());
    String dbConnection = 
      PropertyManager.getProperty("db.connection");
    // Can hold some value like
    // "jdbc:microsoft:sqlserver://<HOST>:1433,<UID>,<PWD>"
    return DriverManager.getConnection(dbConnection);
  }

  String hashPassword(char[] password) {
    // Create hash of password
  }

  public void doPrivilegedAction(String username, char[] password)
                                 throws SQLException {
    Connection connection = getConnection();
    if (connection == null) {
      // Handle error
    }
    try {
      String pwd = hashPassword(password);

      String sqlString = "SELECT * FROM db_user WHERE username = '" 
                         + username +
                         "' AND password = '" + pwd + "'";
      Statement stmt = connection.createStatement();
      ResultSet rs = stmt.executeQuery(sqlString);

      if (!rs.next()) {
        throw new SecurityException(
          "User name or password incorrect"
        );
      }

      // Authenticated; proceed
    } finally {
      try {
        connection.close();
      } catch (SQLException x) {
        // Forward to handler
      }
    }
  }
}

Noncompliant Code Example (PreparedStatement)

The JDBC library provides an API for building SQL commands that sanitize untrusted data. The java.sql.PreparedStatement class properly escapes input strings, preventing SQL injection when used correctly. This code example modifies the doPrivilegedAction() method to use a PreparedStatement instead of java.sql.Statement. However, the prepared statement still permits a SQL injection attack by incorporating the unsanitized input argument username into the prepared statement.

Code Block
bgColor#FFcccc
languagejava
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;

class Login {
  public Connection getConnection() throws SQLException {
    DriverManager.registerDriver(new
            com.microsoft.sqlserver.jdbc.SQLServerDriver());
    String dbConnection = 
      PropertyManager.getProperty("db.connection");
    // Can hold some value like
    // "jdbc:microsoft:sqlserver://<HOST>:1433,<UID>,<PWD>"
    return DriverManager.getConnection(dbConnection);
  }

  String hashPassword(char[] password) {
    // Create hash of password
  }

  public void doPrivilegedAction(
    String username, char[] password
  ) throws SQLException {
    Connection connection = getConnection();
    if (connection == null) {
      // Handle error
    }
    try {
      String pwd = hashPassword(password);
      String sqlString = "select * from db_user where username=" + 
        username + " and password =" + pwd;      
      PreparedStatement stmt = connection.prepareStatement(sqlString);

      ResultSet rs = stmt.executeQuery();
      if (!rs.next()) {
        throw new SecurityException("User name or password incorrect");
      }

      // Authenticated; proceed
    } finally {
      try {
        connection.close();
      } catch (SQLException x) {
        // Forward to handler
      }
    }
  }
}

Compliant Solution (PreparedStatement)

This compliant solution uses a parametric query with a ? character as a placeholder for the argument. This code also validates the length of the username argument, preventing an attacker from submitting an arbitrarily long user name.

Code Block
bgColor#ccccff
languagejava
  public void doPrivilegedAction(
    String username, char[] password
  ) throws SQLException {
    Connection connection = getConnection();
    if (connection == null) {
      // Handle error
    }
    try {
      String pwd = hashPassword(password);

      // Validate username length
      if (username.length() > 8) {
        // Handle error
      }

      String sqlString = 
        "select * from db_user where username=? and password=?";
      PreparedStatement stmt = connection.prepareStatement(sqlString);
      stmt.setString(1, username);
      stmt.setString(2, pwd);
      ResultSet rs = stmt.executeQuery();
      if (!rs.next()) {
        throw new SecurityException("User name or password incorrect");
      }

      // Authenticated; proceed
    } finally {
      try {
        connection.close();
      } catch (SQLException x) {
        // Forward to handler
      }
    }
  }

Use the set*() methods of the PreparedStatement class to enforce strong type checking. This technique mitigates the SQL injection vulnerability because the input is properly escaped by automatic entrapment within double quotes. Note that prepared statements must be used even with queries that insert data into the database.

Many programs accept data from untrusted sources, and then pass the (modified or unmodified) data across a trust boundary to a component in a separate trust domain.

Input must be sanitized, both because an application may be unprepared to handle the malformed input, and also because unsanitized input may include an injection attack.

As a result, it is necessary to sanitize all string data passed to complex subsystems so that the resulting string is innocuous in the context in which it will be interpreted.

Noncompliant Code Example (Blacklisting)

Blacklisting is the process of examining input data, looking for components that are known to be invalid. One advantage of this approach is that detection of known invalid input is often straightforward. A disadvantage is that the set of all possible invalid inputs may be unknown, or too large to enumerate fully.

Depending on the language and subsystem in question, certain characters and character sequences are frequently considered to be invalid input when encountered in strings. A common set of such characters includes:

Character

Name

LF \r

Line Feed

CR \n

Carriage Return

CRLF \r\n

Line Feed + Carriage Return

" and '

Quotes

, and ;

Comma, semicolon, white space

/ and \

Forward and back slash

< and >

Angle brackets

&

Ampersand

%00

NULL

( and )

Parentheses

%

Percent

A blacklist of invalid inputs would forbid the appearance of any of these characters in their raw form. Note that determination of what constitutes invalid input can be difficult. For example, input validation of textual data using a black-listing approach requires enumerating not only the invalid characters shown above, but also the alternate Unicode representations of these characters in differing locales.

This noncompliant example must build a URI from untrusted input. It sanitizes the input by checking for angle brackets. However, the URI may consist of UTF-8 encoded character sequences. If the filter fails to forbid the % characters that comprise part of the UTF-8 encoding, it cannot achieve its purpose. For example, an attacker can bypass the filter by specifying the hexadecimal encoded form of the sequence <script> as %3C%73%63%72%69%70%74%3E.

Code Block
bgColor#FFcccc

String tainted = "%3C%73%63%72%69%70%74%3E"; // Hex encoded equivalent form of <script>

Pattern pattern = Pattern.compile("[<>]");
if (pattern.matcher(tainted).find()) {
  throw new ValidationException("Invalid Input");
}
URI uri = new URI("http://vulnerable.com/" + tainted);

Noncompliant Code Example

This noncompliant code example attempts to check for the hex-encoded form in addition to the canonical representation of the angle brackets. Note, however, that the program remains vulnerable when an alternative encoding, such as a modified Base64 URL encoding, is used farther along the chain.

Code Block
bgColor#FFcccc

String tainted = Base64.encode("%3C%73%63%72%69%70%74%3E".getBytes()); // <script>

Pattern pattern = Pattern.compile("(%3C|<)(.*)(%3E|>)");
if (pattern.matcher(tainted).find()) {
  throw new ValidationException("Invalid Input");
}
URI uri = new URI("http://vulnerable.com/" + tainted);

This approach also fails to prevent other forms of injection attacks that do not rely on angle brackets. Further, the infeasibility of exhaustive enumeration of all forms of blacklisted characters renders the use of methods such as String.replaceAll() ineffective for sanitizing untrusted user input.

Compliant Solution (Whitelisting)

The whitelisting approach to input validation consists of building a list of valid input elements (such as characters) and ensuring that untrusted input elements appear on that list. Whitelisting is easier than blacklisting when it is easier to enumerate valid input elements than to detect and reject all instances of invalid input elements. But this advantage over blacklisting fails to apply when the set of valid input elements is difficult or impossible to enumerate and creating a subset of valid input elements is not a viable solution.

This compliant solution validates the input based on a whitelist. It permits the URL to contain only alphanumeric characters and the encoded forms of the space (" ") and period (".") characters; all other characters are treated as invalid and are rejected.

...

bgColor#ccccFF

...

Risk Assessment

Failure to sanitize user input before processing or storing it can lead to result in injection attacks.

Guideline

Rule

Severity

Likelihood

Remediation Cost

Priority

Level

IDS01

IDS00-J

high

High

probable

Likely

medium

Medium

P12

L1

P18

L1

Automated Detection

ToolVersionCheckerDescription
The Checker Framework

Include Page
The Checker Framework_V
The Checker Framework_V

Tainting CheckerTrust and security errors (see Chapter 8)
CodeSonar
Include Page
CodeSonar_V
CodeSonar_V

JAVA.IO.INJ.SQL

SQL Injection (Java)

Coverity7.5

SQLI
FB.SQL_PREPARED_STATEMENT_GENERATED_

FB.SQL_NONCONSTANT_STRING_PASSED_TO_EXECUTE

Implemented
Findbugs1.0SQL_NONCONSTANT_STRING_PASSED_TO_EXECUTEImplemented
Fortify1.0

HTTP_Response_Splitting
SQL_Injection__Persistence
SQL_Injection

Implemented
Klocwork

Include Page
Klocwork_V
Klocwork_V

SV.DATA.DB
SV.SQL
SV.SQL.DBSOURCE

Implemented
Parasoft Jtest
Include Page
Parasoft_V
Parasoft_V
CERT.IDS00.TDSQLProtect against SQL injection
SonarQube
Include Page
SonarQube_V
SonarQube_V

S2077

S3649

Executing SQL queries is security-sensitive

SQL queries should not be vulnerable to injection attacks

SpotBugs

Include Page
SpotBugs_V
SpotBugs_V

SQL_NONCONSTANT_STRING_PASSED_TO_EXECUTE
SQL_PREPARED_STATEMENT_GENERATED_FROM_NONCONSTANT_STRING

Implemented

Related Vulnerabilities

CVE-2008-2370 describes a vulnerability in Apache Tomcat 4.1.0 through 4.1.37, 5.5.0 through 5.5.26, and 6.0.0 through 6.0.16. When a RequestDispatcher is used, Tomcat performs path normalization before removing the query string from the URI, which allows remote attackers to conduct directory traversal attacks and read arbitrary files via a .. (dot dot) in a request parameter.

Search for other vulnerabilities resulting from the violation of this guideline on the CERT website.

Bibliography

Wiki Markup
\[[OWASP 2008|AA. Bibliography#OWASP 08]\] [Testing for XML Injection (OWASP-DV-008)|http://www.owasp.org/index.php/Testing_for_XML_Injection_%28OWASP-DV-008%29]

Wiki Markup
\[[OWASP 2005|AA. Bibliography#OWASP 05]\] 
\[[OWASP 2007|AA. Bibliography#OWASP 07]\]

Related Guidelines

Android Implementation Details

This rule uses Microsoft SQL Server as an example to show a database connection. However, on Android, DatabaseHelper from SQLite is used for a database connection. Because Android apps may receive untrusted data via network connections, the rule is applicable.

Bibliography


...

Image Added Image Added Image Added13. Input Validation and Data Sanitization (IDS)      13. Input Validation and Data Sanitization (IDS)      IDS02-J. Normalize strings before validating them