Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.
Comment: Updated references from C11->C23

Wiki MarkupC99 Section The C Standard, 7.12.1 defines two types of errors that relate specifically to math functions in {{math.h}} \[[ISO/IEC 9899:1999|AA. C References#ISO/IEC 9899-1999]\]:[ISO/IEC 9899:2024], defines three types of errors that relate specifically to math functions in <math.h>.  Paragraph 2 states

A a domain error occurs if an input argument is outside the domain over which the mathematical function is defined.

Paragraph 3 states

a range error A pole error (also known as a singularity or infinitary) occurs if the mathematical function has an exact infinite result of the function cannot be represented in an object of the specified type, due to extreme magnitude.as the finite input argument(s) are approached in the limit.

Paragraph 4 states

arange error occurs if and only if the result overflows or underflows

...

...

...

...

...

...

...

Programmers can prevent domain and pole errors .Many math errors can be prevented by carefully bounds-checking the arguments before calling mathematical functions , and taking alternative action if the bounds are violated. In particular, the following functions should be bounds checked as follows:

Function

Bounds-checking

acos(x), asin(x)

-1 <= x && x <= 1

atan2(y,x)

x != 0 || y != 0

log(x), log10(x)

x > 0

pow(x,y)

x > 0 || (x == 0 && y > 0) || (x < 0 && y is an integer)

sqrt(x)

x >= 0

lgammma(x)

(x == 0) || (x < 0 && x is an integer) || (x is too large)

tgammma(x)

(x == 0) || (x < 0 && x is an integer) || (x is too large) || (x is too small)

However, for some functions it is not practical to use bounds checking to prevent all errors.  In the above pow example, the bounds check does not prevent the pow(10., 1e6) range error. In these cases detection must be used, either in addition to bounds checking or instead of bounds checking.

...

acos(x), asin(x)

Noncompliant Code Example

The following noncompliant code computes the arc cosine of the variable x

Code Block
bgColor#FFcccc

double x;
double result;

/* Set the value for x */

result = acos(x);

Wiki Markup
However, this code may produce a _domain error_ if {{x}} is not in the range \[-1, \+1\].

Compliant Solution

The following compliant solution uses bounds checking to ensure that there is not a domain error.

Code Block
bgColor#ccccff

double x;
double result;

/* Set the value for x */

if ( isnan(x) || isless(x,-1) || isgreater(x, 1) ){
  /* handle domain error */
}

result = acos(x);

...

Range errors usually cannot be prevented because they are dependent on the implementation of floating-point numbers as well as on the function being applied. Instead of preventing range errors, programmers should attempt to detect them and take alternative action if a range error occurs.

The following table lists the double forms of standard mathematical functions, along with checks that should be performed to ensure a proper input domain, and indicates whether they can also result in range or pole errors, as reported by the C Standard. Both float and long double forms of these functions also exist but are omitted from the table for brevity. If a function has a specific domain over which it is defined, the programmer must check its input values. The programmer must also check for range errors where they might occur. The standard math functions not listed in this table, such as fabs(), have no domain restrictions and cannot result in range or pole errors.

Function

Domain

Range

Pole 

acos(x)

-1 <= x && x <= 1

No

No
asin(x)-1 <= x && x <= 1YesNo
atan(x)NoneYesNo

atan2(y, x)

None

No

No

acosh(x)

x >= 1

Yes

No
asinh(x)NoneYesNo

atanh(x)

-1 < x && x < 1

Yes

Yes

cosh(x), sinh(x)

None

Yes

No

exp(x), exp2(x), expm1(x)

None

Yes

No

ldexp(x, exp)

None

Yes

No

log(x), log10(x), log2(x)

x >= 0

No

Yes

log1p(x)

x >= -1

No

Yes

ilogb(x)

x != 0 && !isinf(x) && !isnan(x)

Yes

No
logb(x)x != 0Yes Yes

scalbn(x, n), scalbln(x, n)

None

Yes

No

hypot(x, y)

None

Yes

No

pow(x,y)

x > 0 || (x == 0 && y > 0) ||
(x < 0 && y is an integer)

Yes

Yes

sqrt(x)

x >= 0

No

No
erf(x)NoneYesNo

erfc(x)

None

Yes

No

lgamma(x), tgamma(x)

x != 0 && ! (x < 0 && x is an integer)

Yes

Yes

lrint(x), lround(x)

None

Yes

No

fmod(x, y), remainder(x, y),
remquo(x, y, quo)

y != 0

Yes

No

nextafter(x, y),
nexttoward(x, y)

None

Yes

No

fdim(x,y)

None

Yes

No 

fma(x,y,z)

None

Yes

No

Domain and Pole Checking

The most reliable way to handle domain and pole errors is to prevent them by checking arguments beforehand, as in the following exemplar:

Code Block
double safe_sqrt(double x) {
  if (x < 0) {
    fprintf(stderr, "sqrt requires a nonnegative argument");
    /* Handle domain / pole error */
  }
  return sqrt (x);
}

Range Checking

Programmers usually cannot prevent range errors, so the most reliable way to handle them is to detect when they have occurred and act accordingly.

The exact treatment of error conditions from math functions is tedious. The C Standard, 7.12.1 paragraph 5 [ISO/IEC 9899:2024], defines the following behavior for floating-point overflow:

A floating result overflows if a finite result value with ordinary accuracy would have magnitude (absolute value) too large for the representation with full precision in the specified type. A result that is exactly an infinity does not overflow. If a floating result overflows and default rounding is in effect, then the function returns the value of the macro HUGE_VAL, HUGE_VALF, or HUGE_VALL according to the return type, with the same sign as the correct value of the function; however, for the types with reduced-precision representations of numbers beyond the overflow threshold, the function may return a representation of the result with less than full precision for the type. If a floating resultoverflowsanddefaultroundingisineffectandtheintegerexpressionmath_errhandling & MATH_ERRNO is nonzero, then the integer expression errno acquires the value ERANGE. If a floating result overflows, and the integer expression math_errhandling & MATH_ERREXCEPT is nonzero, the "overflow" floating-point exception is raised (regardless of whether default rounding is in effect).

It is preferable not to check for errors by comparing the returned value against HUGE_VAL or 0 for several reasons:

  • These are, in general, valid (albeit unlikely) data values.
  • Making such tests requires detailed knowledge of the various error returns for each math function.
  • Multiple results aside from HUGE_VAL and 0 are possible, and programmers must know which are possible in each case.
  • Different versions of the library have varied in their error-return behavior.

It can be unreliable to check for math errors using errno because an implementation might not set errno. For real functions, the programmer determines if the implementation sets errno by checking whether math_errhandling & MATH_ERRNO is nonzero. 

The C Standard, 7.3.2, paragraph 1 [ISO/IEC 9899:2024],  states:

 an implementation may set errno but is not required to.

The obsolete System V Interface Definition (SVID3) [UNIX 1992] provides more control over the treatment of errors in the math library. The programmer can define a function named matherr() that is invoked if errors occur in a math function. This function can print diagnostics, terminate the execution, or specify the desired return value. The matherr() function has not been adopted by C or POSIX, so it is not generally portable.

The following error-handing template uses C Standard functions for floating-point errors when the C macro math_errhandling is defined and indicates that they should be used; otherwise, it examines errno:

Code Block
#include <math.h>
#include <fenv.h>
#include <errno.h>
 
/* ... */
/* Use to call a math function and check errors */
{
  #pragma STDC FENV_ACCESS ON

  if (math_errhandling & MATH_ERREXCEPT) {
    feclearexcept(FE_ALL_EXCEPT);
  }
  errno = 0;

  /* Call the math function */

  if ((math_errhandling & MATH_ERRNO) && errno != 0) {
    /* Handle range error */
  } else if ((math_errhandling & MATH_ERREXCEPT) &&
             fetestexcept(FE_INVALID | FE_DIVBYZERO |
                          FE_OVERFLOW | 

...

atan2(y, x)

Noncompliant Code Example

The following noncompliant code computes the arc tangent of the two variables x and y.

Code Block
bgColor#FFcccc

double x;
double y;
double result;

/* Set the value for x and y */

result = atan2(y, x);

However, this code may produce a domain error if both x and y are zero.

Compliant Solution

The following compliant solution tests the arguments to ensure that there is not a domain error.

Code Block
bgColor#ccccff

double x;
double y;
double result;

/* Set the value for x and y */

if ( (x == 0.f) && (y == 0.f) ) {
  /* handle domain error */
}

result = atan2(y, x);

...

log(x), log10(x)

Noncompliant Code Example

The following noncompliant code determines the natural logarithm of x.

Code Block
bgColorFFcccc

double x;
double result;

/* Set the value for x */

result = log(x);

However, this code may produce a domain error if x is negative and a range error if x is zero.

Compliant Solution

The following compliant solution tests the suspect arguments to ensure that no domain errors or range errors are raised.

Code Block
bgColor#ccccff

double x;
double result;

/* Set the value for x */

if (isnan(x) || islessequal(x, 0)) {
  /* handle domain and range errors */
}

result = log(x);

...

pow(x, y)

Noncompliant Code Example

The following noncompliant code raises x to the power of y.

Code Block
bgColor#FFcccc

double x;
double y;
double result;

result = pow(x, y);

However, this code may produce a domain error if x is negative and y is not an integer, or if x is zero and y is zero. A domain error or range error may occur if x is zero and y is negative, and a range error may occur if the result cannot be represented as a double.

Noncompliant Code Example

This code only performs bounds checking on x and y. It prevents domain errors and some range errors, but does not prevent range errors where the result cannot be represented as a double (see the Error Checking and Detection section below regarding ways to mitigate the effects of a range error).

Code Block
bgColor#ffcccc

double x;
double y;
double result;

if (((x == 0.f) && islessequal(y, 0)) ||
    (isless(x, 0))) {
  /* handle domain and range errors */
}

result = pow(x, y);

...

sqrt(x)

Noncompliant Code Example

The following noncompliant code determines the square root of x

Code Block
bgColor#FFcccc

double x;
double result;

result = sqrt(x);

However, this code may produce a domain error if x is negative.

Compliant Solution

The following compliant solution tests the suspect argument to ensure that no domain error is raised.

Code Block
bgColor#ccccff

double x;
double result;

if (isless(x, 0)){
  /* handle domain error */
}

result = sqrt(x);

...

lgamma(x), tgamma(x)

Mathematically speaking, the domain of both lgamma() and tgamma() is the set of real numbers excepting the non-positive integers. However, since both functions often yield numbers of very large magnitude or very small magnitude, the set of inputs that do not cause a range error is not only more limited, but poorly defined. For instance, tgamma(-90.5) is close enough to 0 that it causes an underflow error on 64-bit IEEE double implementations.

Noncompliant Code Example

This noncompliant code example attempts to prevent domain errors, but does not prevent range errors. The result is often an underflow error.

Code Block
bgColor#ffcccc

float x = -90.5;

if ((x == 0) || (x < 0 && x == nearbyint(x))) {
  /* handle error */
}

float f = tgamma(x);

Compliant Solution

This compliant solution detects the underflow by using the methods described below in the Error Checking and Detection section.

Code Block
bgColor#ccccff

float x = -90.5;

if ((x == 0) || (x < 0 && x == nearbyint(x))) {
  /* handle error */
}

feclearexcept(FE_ALL_EXCEPT);

float f = tgamma(x);

if (fetestexcept(FE_UNDERFLOW) != 0) {
    printf("Underflow detected\n");/* Handle range error */
  }
}

...

See FLP03-C. Detect and handle floating-point errors for more details on how to detect floating-point errors.

Subnormal Numbers

A subnormal number is a nonzero number that does not use all of its precision bits [IEEE 754 2006]. These numbers can be used to represent values that are closer to 0 than the smallest normal number (one that uses all of its precision bits). However, the asin(), asinh(), atan(), atanh(), and erf() functions may produce range errors, specifically when passed a subnormal number. When evaluated with a subnormal number, these functions can produce an inexact, subnormal value, which is an underflow error.

The C Standard, 7.12.1, paragraph 6 [ISO/IEC 9899:2024], defines the following behavior for floating-point underflow:

The result underflows if a nonzero result value with ordinary accuracy would have magnitude (absolute value) less than the minimum normalized number in the type; however a zero result that is specified to be an exact zero does not underflow. Also, a result with ordinary accuracy and the magnitude of the minimum normalized number may underflow.269) If the result underflows, the function returns an implementation-defined value whose magnitude is no greater than the smallest normalized positive number in the specified type; if the integer expression math_errhandling & MATH_ERRNO is nonzero, whether errno acquires the value ERANGE is implementation-defined; if the integer expression math_errhandling & MATH_ERREXCEPT s nonzero, whether the"underflow" floating-point exception is raised is implementation-defined. 

Implementations that support floating-point arithmetic but do not support subnormal numbers, such as IBM S/360 hex floating-point or nonconforming IEEE-754 implementations that skip subnormals (or support them by flushing them to zero), can return a range error when calling one of the following families of functions with the following arguments:

  • fmod((min+subnorm), min)
  • remainder((min+subnorm), min)
  • remquo((min+subnorm), min, quo)

where min is the minimum value for the corresponding floating point type and subnorm is a subnormal value.

If Annex F is supported and subnormal results are supported, the returned value is exact and a range error cannot occur. The C Standard, F.10.7.1 paragraph 2 [ISO/IEC 9899:2024], specifies the following for the fmod(), remainder(), and remquo() functions:

When subnormal results are supported, the returned value is exact and is independent of the current rounding direction mode.

Annex F, subclause F.10.7.2, paragraph 2, and subclause F.10.7.3, paragraph 2, of the C Standard identify when subnormal results are supported.

Noncompliant Code Example (sqrt())

This noncompliant code example determines the square root of x:

Code Block
bgColor#FFcccc
langc
#include <math.h>
 
void func(double x) {
  double result;
  result = sqrt(x);
}

However, this code may produce a domain error if x is negative.

Compliant Solution (sqrt())

Because this function has domain errors but no range errors, bounds checking can be used to prevent domain errors:

Code Block
bgColor#ccccff
langc
#include <math.h>
 
void func(double x) {
  double result;

  if (isless(x, 0.0)) {
    /* Handle domain error */
  }

  result = sqrt(x);
}

Noncompliant Code Example (sinh(), Range Errors)

This noncompliant code example determines the hyperbolic sine of x:

Code Block
bgColor#FFcccc
langc
#include <math.h>
 
void func(double x) {
  double result;
  result = sinh(x);
}

This code may produce a range error if x has a very large magnitude.

Compliant Solution (sinh(), Range Errors)

Because this function has no domain errors but may have range errors, the programmer must detect a range error and act accordingly:

Code Block
bgColor#ccccff
langc
#include <math.h>
#include <fenv.h>
#include <errno.h>
 
void func(double x) { 
  double result;
  {
    #pragma STDC FENV_ACCESS ON
    if (math_errhandling & MATH_ERREXCEPT) {
      feclearexcept(FE_ALL_EXCEPT);
    }
    errno = 0;

    result = sinh(x);

    if ((math_errhandling & MATH_ERRNO) && errno != 0) {
      /* Handle range error */
    } else if ((math_errhandling & MATH_ERREXCEPT) &&
               fetestexcept(FE_INVALID | FE_DIVBYZERO |
                            FE_OVERFLOW | FE_UNDERFLOW) != 0) {
      /* Handle range error */
    }
  }
 
  /* Use result... */
}

Noncompliant Code Example (pow())

This noncompliant code example raises x to the power of y:

Code Block
bgColor#FFcccc
langc
#include <math.h>
 
void func(double x, double y) {
  double result;
  result = pow(x, y);
}

This code may produce a domain error if x is negative and y is not an integer value or if x is 0 and y is 0. A domain error or pole error may occur if x is 0 and y is negative, and a range error may occur if the result cannot be represented as a double.

Compliant Solution (pow())

Because the pow() function can produce domain errors, pole errors, and range errors, the programmer must first check that x and y lie within the proper domain and do not generate a pole error and then detect whether a range error occurs and act accordingly:

Code Block
bgColor#ccccff
langc
#include <math.h>
#include <fenv.h>
#include <errno.h>
 
void func(double x, double y) {
  double result;

  if (((x == 0.0f) && islessequal(y, 0.0)) || isless(x, 0.0)) {
    /* Handle domain or pole error */
  }

  {
    #pragma STDC FENV_ACCESS ON
    if (math_errhandling & MATH_ERREXCEPT) {
      feclearexcept(FE_ALL_EXCEPT);
    }
    errno = 0;

    result = pow(x, y);
 
    if ((math_errhandling & MATH_ERRNO) && errno != 0) {
      /* Handle range error */
    } else if ((math_errhandling & MATH_ERREXCEPT) &&
               fetestexcept(FE_INVALID | FE_DIVBYZERO |
                            FE_OVERFLOW | FE_UNDERFLOW) != 0) {
      /* Handle range error */
    }
  }

  /* Use result... */
}

Noncompliant Code Example (asin(), Subnormal Number)

This noncompliant code example determines the inverse sine of x:

Code Block
bgColor#FFcccc
langc
#include <math.h>
 
void func(float x) {
  float result = asin(x);
  /* ... */
}

Compliant Solution (asin(), Subnormal Number)

Because this function has no domain errors but may have range errors, the programmer must detect a range error and act accordingly:

Code Block
bgColor#ccccff
langc
#include <math.h>
#include <fenv.h>
#include <errno.h>
void func(float x) { 
  float result;

  {
    #pragma STDC FENV_ACCESS ON
    if (math_errhandling & MATH_ERREXCEPT) {
      feclearexcept(FE_ALL_EXCEPT);
    }
    errno = 0;

    result = asin(x);

    if ((math_errhandling & MATH_ERRNO) && errno != 0) {
      /* Handle range error */
    } else if ((math_errhandling & MATH_ERREXCEPT) &&
               fetestexcept(FE_INVALID | FE_DIVBYZERO |
                            FE_OVERFLOW | FE_UNDERFLOW) != 0) {
      /* Handle range error */
    }
  }

  /* Use result... */
}

Risk Assessment

Failure to prevent or detect domain and range errors in math functions may cause unexpected results.

Rule

Severity

Likelihood

Remediation Cost

Priority

Level

FLP32-C

Medium

Probable

Medium

P8

L2

Automated Detection

Tool

Version

Checker

Description

Astrée
Include Page
Astrée_V
Astrée_V
stdlib-limits
Partially checked
Axivion Bauhaus Suite

Include Page
Axivion Bauhaus Suite_V
Axivion Bauhaus Suite_V

CertC-FLP32Partially implemented
CodeSonar
Include Page
CodeSonar_V
CodeSonar_V
MATH.DOMAIN.ATAN
MATH.DOMAIN.TOOHIGH
MATH.DOMAIN.TOOLOW
MATH.DOMAIN
MATH.RANGE
MATH.RANGE.GAMMA
MATH.DOMAIN.LOG
MATH.RANGE.LOG
MATH.DOMAIN.FE_INVALID
MATH.DOMAIN.POW
MATH.RANGE.COSH.TOOHIGH
MATH.RANGE.COSH.TOOLOW
MATH.DOMAIN.SQRT
Arctangent Domain Error
Argument Too High
Argument Too Low
Floating Point Domain Error
Floating Point Range Error
Gamma on Zero
Logarithm on Negative Value
Logarithm on Zero
Raises FE_INVALID
Undefined Power of Zero
cosh on High Number
cosh on Low Number
sqrt on Negative Value
Helix QAC

Include Page
Helix QAC_V
Helix QAC_V

C5025

C++5033


Parasoft C/C++test

Include Page
Parasoft_V
Parasoft_V

CERT_C-FLP32-a
Validate values passed to library functions
PC-lint Plus

Include Page
PC-lint Plus_V
PC-lint Plus_V

2423

Partially supported: reports domain errors for functions with the Semantics *dom_1, *dom_lt0, or *dom_lt1, including standard library math functions

Polyspace Bug Finder

Include Page
Polyspace Bug Finder_V
Polyspace Bug Finder_V

CERT-C: Rule FLP32-CChecks for invalid use of standard library floating point routine (rule fully covered)


RuleChecker

Include Page
RuleChecker_V
RuleChecker_V

stdlib-limits
Partially checked
TrustInSoft Analyzer

Include Page
TrustInSoft Analyzer_V
TrustInSoft Analyzer_V

out-of-range argumentPartially verified.

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

Related Guidelines

Key here (explains table format and definitions)

Taxonomy

Taxonomy item

Relationship

CERT C Secure Coding StandardFLP03-C. Detect and handle floating-point errorsPrior to 2018-01-12: CERT: Unspecified Relationship
CWE 2.11CWE-682, Incorrect Calculation2017-07-07: CERT: Rule subset of CWE

CERT-CWE Mapping Notes

Key here for mapping notes

CWE-391 and FLP32-C

Intersection( CWE-391, FLP32-C) =


  • Failure to detect range errors in floating-point calculations


CWE-391 - FLP32-C


  • Failure to detect errors in functions besides floating-point calculations


FLP32-C – CWE-391 =


  • Failure to detect domain errors in floating-point calculations


CWE-682 and FLP32-C

Independent( INT34-C, FLP32-C, INT33-C) CWE-682 = Union( FLP32-C, list) where list =


  • Incorrect calculations that do not involve floating-point range errors


Bibliography

[ISO/IEC 9899:2024]

7.3.2, "Conventions"
7.12.1, "Treatment of Error Conditions"
F.10.7, "Remainder Functions" 

[IEEE 754 2006 ]
[Plum 1985]Rule 2-2
[Plum 1989]Topic 2.10, "conv—Conversions and Overflow"
[UNIX 1992]System V Interface Definition (SVID3)


...

Image Added Image Added Image Added

...

Error Checking and Detection

Wiki Markup
The exact treatment of error conditions from math functions is quite complicated.  C99 Section 7.12.1 defines the following behavior for floating point overflow \[[ISO/IEC 9899:1999|AA. C References#ISO/IEC 9899-1999]\]

A floating result overflows if the magnitude of the mathematical result is finite but so large that the mathematical result cannot be represented without extraordinary roundoff error in an object of the specified type. If a floating result overflows and default rounding is in effect, or if the mathematical result is an exact infinity from finite arguments (for example log(0.0)), then the function returns the value of the macro HUGE_VAL, HUGE_VALF, or HUGE_VALL according to the return type, with the same sign as the correct value of the function; if the integer expression math_errhandling & MATH_ERRNO is nonzero, the integer expression errno acquires the value ERANGE; if the integer expression math_errhandling & MATH_ERREXCEPT is nonzero, the ''divide-by-zero'' floating-point exception is raised if the mathematical result is an exact infinity and the ''overflow'' floating-point exception is raised otherwise.

It is best not to check for errors by comparing the returned value against HUGE_VAL or 0 for several reasons:

  • These are in general valid (albeit unlikely) data values.
  • Making such tests requires detailed knowledge of the various error returns for each math function.
  • There are three different possibilities, -HUGE_VAL, 0, and HUGE_VAL, and you must know which are possible in each case.
  • Different versions of the library have differed in their error-return behavior.

Wiki Markup
It is also difficult to check for math errors using {{errno}} because an implementation might not set it. For real functions, the programmer can tell whether the implementation sets {{errno}} by checking whether {{math_errhandling & MATH_ERRNO}} is nonzero. For complex functions, the C99 Section 7.3.2 simply states "an implementation may set {{errno}} but is not required to" \[[ISO/IEC 9899:1999|AA. C References#ISO/IEC 9899-1999]\].

Compliant Solution (Error Checking)

The most reliable way to test for errors is by checking arguments beforehand, as in the following compliant solution:

Code Block
bgColor#ccccff

if (/* arguments will cause a domain or range error */) {
  /* handle the error */
}
else {
  /* perform computation */
}

For functions where argument validation is difficult, including pow(), erfc(), lgamma(), and tgamma(), one can employ the following approach. This approach uses C99 standard functions for floating point errors.

Code Block
bgColor#ccccff

#include <math.h>
#if defined(math_errhandling) \
  && (math_errhandling & MATH_ERREXCEPT)
#include <fenv.h>
#endif

/* ... */

#if defined(math_errhandling) \
  && (math_errhandling & MATH_ERREXCEPT)
  feclearexcept(FE_ALL_EXCEPT);
#endif
errno = 0;

/* call the function */

#if !defined(math_errhandling) \
  || (math_errhandling & MATH_ERRNO)
if (errno != 0) {
  /* handle error */
}
#endif
#if defined(math_errhandling) \
  && (math_errhandling & MATH_ERREXCEPT)
if (fetestexcept(FE_INVALID
               | FE_DIVBYZERO
               | FE_OVERFLOW) != 0)
{
  /* handle error */
}
#endif

See FLP03-C. Detect and handle floating point errors for more details on how to detect floating point errors.

Implementation Details

System V Interface Definition, Third Edition

The System V Interface Definition, Third Edition (SVID3) provides more control over the treatment of errors in the math library. The user can provide a function named matherr that is invoked if errors occur in a math function. This function can print diagnostics, terminate the execution, or specify the desired return-value. The matherr() function has not been adopted by C99, so its use is not generally portable.

Risk Assessment

Failure to properly verify arguments supplied to math functions may result in unexpected results.

Rule

Severity

Likelihood

Remediation Cost

Priority

Level

FLP32-C

medium

probable

medium

P8

L2

Automated Detection

Fortify SCA Version 5.0 with CERT C Rule Pack can detect violations of this rule.

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

Wiki Markup
\[[ISO/IEC 9899:1999|AA. C References#ISO/IEC 9899-1999]\] Section 7.3, "Complex arithmetic <{{complex.h}}>", and Section 7.12, "Mathematics <{{math.h}}>"
\[[Plum 85|AA. C References#Plum 85]\] Rule 2-2
\[[Plum 89|AA. C References#Plum 91]\] Topic 2.10, "conv - conversions and overflow"

FLP31-C. Do not call functions expecting real values with complex values      05. Floating Point (FLP)       FLP33-C. Convert integers to floating point for floating point operations