You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 220 Next »

Dereferencing a null pointer is undefined behavior.

On many platforms, dereferencing a null pointer results in abnormal program termination, but this is not required by the standard. See "Clever Attack Exploits Fully-Patched Linux Kernel" [Goodin 2009] for an example of a code execution exploit that resulted from a null pointer dereference.

Noncompliant Code Example

This noncompliant code example is derived from a real-world example taken from a vulnerable version of the libpng library as deployed on a popular ARM-based cell phone [Jack 2007]. The  libpng library allows applications to read, create, and manipulate PNG (Portable Network Graphics) raster image files. The libpng library implements its own wrapper to malloc() that returns a null pointer on error or on being passed a 0-byte-length argument.

This code also violates ERR33-C. Detect and handle standard library errors.

#include <png.h> /* From libpng */
#include <string.h>
 
void func(png_structp png_ptr, int length, const void *user_data) { 
  png_charp chunkdata;
  chunkdata = (png_charp)png_malloc(png_ptr, length + 1);
  /* ... */
  memcpy(chunkdata, user_data, length);
  /* ... */
 }

If length has the value −1, the addition yields 0, and png_malloc() subsequently returns a null pointer, which is assigned to chunkdata. The chunkdata pointer is later used as a destination argument in a call to memcpy(), resulting in user-defined data overwriting memory starting at address 0. In the case of the ARM and XScale architectures, the 0x0 address is mapped in memory and serves as the exception vector table; consequently, dereferencing 0x0 did not cause an abnormal program termination.

Compliant Solution

This compliant solution ensures that the pointer returned by png_malloc() is not null. It also uses the unsigned type size_t to pass the length parameter, ensuring that negative values are not passed to func().

This solution also ensures that the user_data pointer is not null. Passing a null pointer to memcpy() would produce undefined behavior, even if the number of bytes to copy were 0.  The user_data pointer could be invalid in other ways, such as pointing to freed memory. However there is no portable way to verify that the pointer is valid, other than checking for null.

#include <png.h> /* From libpng */
#include <string.h>

 void func(png_structp png_ptr, size_t length, const void *user_data) { 
  png_charp chunkdata;
  if (length == SIZE_MAX) {
    /* Handle error */
  }
  if (NULL == user_data) {
    /* Handle error */
  }
  chunkdata = (png_charp)png_malloc(png_ptr, length + 1);
  if (NULL == chunkdata) {
    /* Handle error */
  }
  /* ... */
  memcpy(chunkdata, user_data, length);
  /* ... */

 }

Noncompliant Code Example

In this noncompliant code example, input_str is copied into dynamically allocated memory referenced by c_str. If malloc() fails, it returns a null pointer that is assigned to c_str. When c_str is dereferenced in memcpy(), the program exhibits undefined behavior.  Additionally, if input_str is a null pointer, the call to strlen() dereferences a null pointer, also resulting in undefined behavior. This code also violates ERR33-C. Detect and handle standard library errors.

#include <string.h>
#include <stdlib.h>
 
void f(const char *input_str) {
  size_t size = strlen(input_str) + 1;
  char *c_str = (char *)malloc(size);
  memcpy(c_str, input_str, size);
  /* ... */
  free(c_str);
  c_str = NULL;
  /* ... */
}

Compliant Solution

This compliant solution ensures that both input_str and the pointer returned by malloc() are not null: 

#include <string.h>
#include <stdlib.h>
 
void f(const char *input_str) {
  size_t size;
  char *c_str;
 
  if (NULL == input_str) {
    /* Handle error */
  }
  
  size = strlen(input_str) + 1;
  c_str = (char *)malloc(size);
  if (NULL == c_str) {
    /* Handle error */
  }
  memcpy(c_str, input_str, size);
  /* ... */
  free(c_str);
  c_str = NULL;
  /* ... */
}

Noncompliant Code Example

This noncompliant code example is from a version of drivers/net/tun.c and affects Linux kernel 2.6.30 [Goodin 2009]:

static unsigned int tun_chr_poll(struct file *file, poll_table *wait)  {
  struct tun_file *tfile = file->private_data;
  struct tun_struct *tun = __tun_get(tfile);
  struct sock *sk = tun->sk;
  unsigned int mask = 0;

  if (!tun)
    return POLLERR;

  DBG(KERN_INFO "%s: tun_chr_poll\n", tun->dev->name);

  poll_wait(file, &tun->socket.wait, wait);

  if (!skb_queue_empty(&tun->readq))
    mask |= POLLIN | POLLRDNORM;

  if (sock_writeable(sk) ||
     (!test_and_set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags) &&
     sock_writeable(sk)))
    mask |= POLLOUT | POLLWRNORM;

  if (tun->dev->reg_state != NETREG_REGISTERED)
    mask = POLLERR;

  tun_put(tun);
  return mask;
}

The sk pointer is initialized to tun->sk before checking if tun is a null pointer. Because null pointer dereferencing is undefined behavior, the compiler (GCC in this case) can optimize away the if (!tun) check because it is performed after tun->sk is accessed, implying that tun is non-null. As a result, this noncompliant code example is vulnerable to a null pointer dereference exploit, because null pointer dereferencing can be permitted on several platforms, for example, by using mmap(2) with the MAP_FIXED flag on Linux and Mac OS X, or by using the shmat() POSIX function with the SHM_RND flag [Liu 2009].

Compliant Solution

This compliant solution eliminates the null pointer deference by initializing sk to tun->sk following the null pointer check. It also adds assertions to document that certain other pointers must not be null.

static unsigned int tun_chr_poll(struct file *file, poll_table *wait)  {
  assert(file);
  struct tun_file *tfile = file->private_data;
  struct tun_struct *tun = __tun_get(tfile);
  struct sock *sk;
  unsigned int mask = 0;

  if (!tun)
    return POLLERR;
  assert(tun->dev);
  sk = tun->sk;
  assert(sk);
  assert(sk->socket);
  /* The remaining code is omitted because it is unchanged... */
}

Risk Assessment

Dereferencing a null pointer is undefined behavior, typically abnormal program termination. In some situations, however, dereferencing a null pointer can lead to the execution of arbitrary code [Jack 2007van Sprundel 2006]. The indicated severity is for this more severe case; on platforms where it is not possible to exploit a null pointer dereference to execute arbitrary code, the actual severity is low.

Rule

Severity

Likelihood

Remediation Cost

Priority

Level

EXP34-C

High

Likely

Medium

P18

L1

Automated Detection

ToolVersionCheckerDescription
Astrée
24.04
null-dereferencingFully checked
Axivion Bauhaus Suite

7.2.0

CertC-EXP34
CodeSonar
8.1p0

LANG.MEM.NPD
LANG.STRUCT.NTAD
LANG.STRUCT.UPD

Null pointer dereference
Null test after dereference
Unchecked parameter dereference

Compass/ROSE

Can detect violations of this rule. In particular, ROSE ensures that any pointer returned by malloc(), calloc(), or realloc() is first checked for NULL before being used (otherwise, it is free()-ed). ROSE does not handle cases where an allocation is assigned to an lvalue that is not a variable (such as a struct member or C++ function call returning a reference)

Coverity


2017.07

CHECKED_RETURN

NULL_RETURNS

REVERSE_INULL

FORWARD_NULL

Finds instances where a pointer is checked against NULL and then later dereferenced

Identifies functions that can return a null pointer but are not checked

Identifies code that dereferences a pointer and then checks the pointer against NULL

Can find the instances where NULL is explicitly dereferenced or a pointer is checked against NULL but then dereferenced anyway. Coverity Prevent cannot discover all violations of this rule, so further verification is necessary

Cppcheck
 2.15
nullPointer, nullPointerDefaultArg, nullPointerRedundantCheck

Context sensitive analysis

Detects when NULL is dereferenced (Array of pointers is not checked. Pointer members in structs are not checked.)

Finds instances where a pointer is checked against NULL and then later dereferenced

Identifies code that dereferences a pointer and then checks the pointer against NULL

Does not guess that return values from malloc(), strchr(), etc., can be NULL (The return value from malloc() is NULL only if there is OOMo and the dev might not care to handle that. The return value from strchr() is often NULL, but the dev might know that a specific strchr() function call will not return NULL.)

Helix QAC

2024.3

C2810, C2811, C2812, C2813

C++2810, C++2811, C++2812, C++2813


Klocwork
2024.3

NPD.CHECK.CALL.MIGHT
NPD.CHECK.CALL.MUST
NPD.CHECK.MIGHT
NPD.CHECK.MUST
NPD.CONST.CALL
NPD.CONST.DEREF
NPD.FUNC.CALL.MIGHT
NPD.FUNC.CALL.MUST
NPD.FUNC.MIGHT
NPD.FUNC.MUST
NPD.GEN.CALL.MIGHT
NPD.GEN.CALL.MUST
NPD.GEN.MIGHT
NPD.GEN.MUST
RNPD.CALL
RNPD.DEREF


LDRA tool suite
9.7.1

45 D, 123 D, 128 D, 129 D, 130 D, 131 D, 652 S

Fully implemented
Parasoft C/C++test
2023.1

CERT_C-EXP34-a

Avoid null pointer dereferencing

Parasoft Insure++

Runtime analysis
PC-lint Plus

1.4

413, 418, 444, 613, 668

Partially supported

Polyspace Bug Finder

R2024a

CERT C: Rule EXP34-C


Checks for use of null pointers (rule partially covered)

PRQA QA-C
Unable to render {include} The included page could not be found.

2810, 2811, 2812, 2813

Fully implemented
PRQA QA-C++

4.4

2810, 2811, 2812, 2813


PVS-Studio

7.33

V522, V595, V664, V713, V1004
SonarQube C/C++ Plugin
3.11
S2259
Splint
3.1.1


TrustInSoft Analyzer

1.38

mem_accessExhaustively verified (see one compliant and one non-compliant example).

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

Related Guidelines

Key here (explains table format and definitions)

Taxonomy

Taxonomy item

Relationship

CERT Oracle Secure Coding Standard for JavaEXP01-J. Do not use a null in a case where an object is requiredPrior to 2018-01-12: CERT: Unspecified Relationship
ISO/IEC TR 24772:2013Pointer Casting and Pointer Type Changes [HFC]Prior to 2018-01-12: CERT: Unspecified Relationship
ISO/IEC TR 24772:2013Null Pointer Dereference [XYH]Prior to 2018-01-12: CERT: Unspecified Relationship
ISO/IEC TS 17961Dereferencing an out-of-domain pointer [nullref]Prior to 2018-01-12: CERT: Unspecified Relationship
CWE 2.11CWE-476, NULL Pointer Dereference2017-07-06: CERT: Exact

CERT-CWE Mapping Notes

Key here for mapping notes

CWE-690 and EXP34-C

EXP34-C = Union( CWE-690, list) where list =


  • Dereferencing null pointers that were not returned by a function


CWE-252 and EXP34-C

Intersection( CWE-252, EXP34-C) = Ø

EXP34-C is a common consequence of ignoring function return values, but it is a distinct error, and can occur in other scenarios too.

Bibliography

[Goodin 2009]
[Jack 2007]
[Liu 2009]
[van Sprundel 2006]
[Viega 2005]Section 5.2.18, "Null-Pointer Dereference"



  • No labels