You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 15 Next »

The C++ Standard, [support.runtime], paragraph 10 [ISO/IEC 14882-2014], states:

The common subset of the C and C++ languages consists of all declarations, definitions, and expressions that may appear in a well formed C++ program and also in a conforming C program. A POF (“plain old function”) is a function that uses only features from this common subset, and that does not directly or indirectly use any function that is not a POF, except that it may use plain lock-free atomic operations. A plain lock-free atomic operation is an invocation of a function f from Clause 29, such that f is not a member function, and either f is the function atomic_is_lock_free, or for every atomic argument A passed to f, atomic_is_lock_free(A) yields true. All signal handlers shall have C linkage. The behavior of any function other than a POF used as a signal handler in a C++ program is implementation-defined.228

Footnote 228 states:

In particular, a signal handler using exception handling is very likely to have problems. Also, invoking std::exit may cause destruction of objects, including those of the standard library implementation, which, in general, yields undefined behavior in a signal handler.

Noncompliant Code Example

In this noncompliant code example, the signal handler is declared as a static function. However, since all signal handler functions must have C language linkage, and C++ is the default language linkage for functions in C++, calling the signal handler results in undefined behavior.

#include <csignal>
 
static void sig_handler(int sig) {
  // Implementation details elided
}

void f() {
  if (SIG_ERR == std::signal(SIGTERM, sig_handler)) {
    // Handle error
  }
}

Compliant Solution

This compliant solution defines sig_handler() as having C language linkage. As a consequence of declaring the signal handler with C language linkage, the signal handler will have external linkage rather than internal linkage.

#include <csignal>
 
extern "C" void sig_handler(int sig) {
  // Implementation details elided
}

void f() {
  if (SIG_ERR == std::signal(SIGTERM, sig_handler)) {
    // Handle error
  }
}

Noncompliant Code Example

In this noncompliant code example, a signal handler calls a function that allows exceptions, and it attempts to handle any exceptions thrown. Because exceptions are not part of the common subset of C and C++ features, this example results in implementation-defined behavior. However, it is unlikely that the implementation's behavior will be suitable. For instance, on a stack-based architecture where a signal is generated asynchronously (instead of as a result of a call to std:abort() or std::raise()), it is possible that the stack frame is not properly initialized, causing stack tracing to be unreliable and preventing the exception from being caught properly.

#include <csignal>

static void g() noexcept(false);

extern "C" void sig_handler(int sig) {
  try {
    g();
  } catch (...) {
    // Handle error
  }
}
 
void f() {
  if (SIG_ERR == std::signal(SIGTERM, sig_handler)) {
    // Handle error
  }
}

Compliant Solution

There is no compliant solution whereby g() can be called because it allows exceptions. Even if g() were implemented such that it handled all exceptions and was marked noexcept(true), it would still be noncompliant to call it from a signal handler because g() would still use a feature that is not a part of the common subset of C and C++ features allowed by a signal handler. Therefore, this compliant solution removes the call to g():

#include <csignal>

static void g() noexcept(false); // Not called

extern "C" void sig_handler(int sig) {
  // Implement g()'s behavior to the extent possible given
  // the constraints placed on a signal handler function.
}

void f() {
  if (SIG_ERR == std::signal(SIGTERM, sig_handler)) {
    // Handle error
  }
}

Risk Assessment

Failing to use a plain old function as a signal handler can result in implementation-defined behavior as well as undefined behavior. Given the number of features that exist in C++ that do not also exist in C, the consequences that arise from failure to comply with this rule can range from benign (harmless) behavior to abnormal program termination, or even arbitrary code execution.

Rule

Severity

Likelihood

Remediation Cost

Priority

Level

MSC54-CPP

High

Probable

High

P6

L2

Automated Detection

Tool

Version

Checker

Description

Parasoft C/C++test9.5MISRA2012-RULE-21_5_b 

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

Related Guidelines

Bibliography

[ISO/IEC 14882-2014]

Subclause 18.10, "Other Runtime Support"

 


  

  • No labels