You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 126 Current »

A log injection vulnerability arises when a log entry contains unsanitized user input. A malicious user can insert fake log data and consequently deceive system administrators as to the system's behavior [OWASP 2008]. For example, an attacker might split a legitimate log entry into two log entries by entering a carriage return and line feed (CRLF) sequence to mislead an auditor. Log injection attacks can be prevented by sanitizing and validating any untrusted input sent to a log.

Logging unsanitized user input can also result in leaking sensitive data across a trust boundary. For example, an attacker might inject a script into a log file such that when the file is viewed using a web browser, the browser could provide the attacker with a copy of the administrator's cookie so that the attacker might gain access as the administrator.

Noncompliant Code Example

This noncompliant code example logs untrusted data from an unauthenticated user without data sanitization.

if (loginSuccessful) {
  logger.severe("User login succeeded for: " + username);
} else {
  logger.severe("User login failed for: " + username);
}

Without sanitization, a log injection attack is possible. A standard log message when username is guest might look like this:

May 15, 2011 2:19:10 PM java.util.logging.LogManager$RootLogger log
SEVERE: User login failed for: guest 

If the username that is used in a log message is not guest but rather a multiline string like this:

guest 
May 15, 2011 2:25:52 PM java.util.logging.LogManager$RootLogger log
SEVERE: User login succeeded for: administrator

the log would contain the following misleading data:

May 15, 2011 2:19:10 PM java.util.logging.LogManager$RootLogger log
SEVERE: User login failed for: guest 
May 15, 2011 2:25:52 PM java.util.logging.LogManager log
SEVERE: User login succeeded for: administrator

Compliant Solution (Sanitized User)

This compliant solution sanitizes the username before logging it, preventing injection attacks.

if (loginSuccessful) {
  logger.severe("User login succeeded for: " + sanitizeUser(username));
} else {
  logger.severe("User login failed for: " + sanitizeUser(username));
}

The sanitization is done by a dedicated method for sanitizing user names:

public String sanitizeUser(String username) {
  return Pattern.matches("[A-Za-z0-9_]+", username)) 
      ? username : "unauthorized user";
}

Compliant Solution (Sanitized Logger)

This compliant solution uses a text logger that automatically sanitizes its input. A sanitized logger saves the developer from having to worry about unsanitized log messages.


Logger sanLogger = new SanitizedTextLogger(logger);

if (loginSuccessful) {
  sanLogger.severe("User login succeeded for: " + username);
} else {
  sanLogger.severe("User login failed for: " + username);
}

The sanitized text logger takes as delegate an actual logger. We assume the logger outputs text log messages to a file, network, or the console, and each log message has no indented lines. The sanitized text logger sanitizes all text to be logged by indenting every line except the first by two spaces. While a malicious user can indent text by more, a malicious user cannot create a fake log entry because all of her output will be indented, except for the real log output.

class SanitizedTextLogger extends Logger {
  Logger delegate;

  public SanitizedTextLogger(Logger delegate) {
    super(delegate.getName(), delegate.getResourceBundleName());
    this.delegate = delegate;
  }

  public String sanitize(String msg) {
    Pattern newline = Pattern.compile("\n");
    Matcher matcher = newline.matcher(msg);
    return matcher.replaceAll("\n  ");
  }

  public void severe(String msg) {
    delegate.severe(sanitize(msg));
  }

  // .. Other Logger methods which must also sanitize their log messages
}

Risk Assessment

Allowing unvalidated user input to be logged can result in forging of log entries, leaking secure information, or storing sensitive data in a manner that violates a local law or regulation.

Rule

Severity

Likelihood

Remediation Cost

Priority

Level

IDS03-J

Medium

Probable

Medium

P8

L2

Automated Detection

ToolVersionCheckerDescription
The Checker Framework

2.1.3

Tainting CheckerTrust and security errors (see Chapter 8)
CodeSonar
8.1p0

JAVA.IO.TAINT.LOG

Tainted Log (Java)

Fortify
Log_ForgingImplemented
Klocwork
SVLOG_FORGINGImplemented
Parasoft Jtest
2024.1
CERT.IDS03.TDLOGProtect against log forging

Related Guidelines

ISO/IEC TR 24772:2013

Injection [RST]

MITRE CWE

CWE-144, Improper neutralization of line delimiters
CWE-150, Improper neutralization of escape, meta, or control sequences
CWE-117, Improper Output Neutralization for Logs 

MITRE CAPEC

CAPEC-93, Log Injection-Tampering-Forging

Bibliography



  • No labels