You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 55 Next »

According to the C Standard [ISO/IEC 9899:2011], the behavior a program is undefined when

the value of errno is referred to after a signal occurred other than as the result of calling the abort or raise function and the corresponding signal handler obtained a SIG_ERR return from a call to the signal function.

(See undefined behavior 133 of Annex J.)

A signal handler is allowed to call signal(), and if that fails, signal() returns SIG_ERR and sets errno to a positive value. However, if the event that caused a signal was external (not the result of the program calling abort() or raise()), the only functions the signal handler may call are _Exit() or abort(), or it may call signal() on the signal currently being handled, and if signal() fails, the value of errno is indeterminate.

This rule is a special case of SIG31-C. Do not access shared objects in signal handlers. The object designated by errno is of static storage duration and is not a volatile sig_atomic_t. As a result, performing any action that would require errno to be set would normally cause undefined behavior. The C Standard makes a special exception for errno in this case, saying the only thing that is allowed to go wrong is that errno can take on an indeterminate value. This special exception makes it possible to call signal() from within a signal handler without risking unrestricted undefined behavior, but the handler, and any code executed after the handler returns, must not depend on the value of errno being meaningful.

Noncompliant Code Example

If the request to set the signal to default can be honored, the signal() function returns the value of the signal handler for the most recent successful call to the signal() function for the specified signal. Otherwise, a value of SIG_ERR is returned and a positive value is stored in errno.

#include <signal.h>
#include <stdlib.h>
#include <stdio.h>

typedef void (*pfv)(int);

void handler(int signum) {
  pfv old_handler = signal(signum, SIG_DFL);
  if (old_handler == SIG_ERR) {
    perror("SIGINT handler"); /* undefined behavior */
    /* Handle error condition */
  }
}

int main(void) {
  pfv old_handler = signal(SIGINT, handler);
  if (old_handler == SIG_ERR) {
    perror("SIGINT handler");
    /* Handle error condition */
  }

  /* Main code loop */

  return EXIT_SUCCESS;
}

The call to perror() from handler() also violates SIG30-C. Call only asynchronous-safe functions within signal handlers.

Compliant Solution

The compliant solution does not reference errno and does not return from the signal handler if the signal() call fails:

#include <signal.h>
#include <stdlib.h>
#include <stdio.h>

typedef void (*pfv)(int);

void handler(int signum) {
  pfv old_handler = signal(signum, SIG_DFL);
  if (old_handler == SIG_ERR) {
    abort();
  }
}

int main(void) {
  pfv old_handler = signal(SIGINT, handler);
  if (old_handler == SIG_ERR) {
    perror("SIGINT handler");
    /* Handle error condition */
  }

  /* Main code loop */

  return EXIT_SUCCESS;
}

Noncompliant Code Example (POSIX)

POSIX is less restrictive than C about what applications can do in signal handlers. It has a long list of asynchronous-safe functions that can be called. (See SIG30-C. Call only asynchronous-safe functions within signal handlers.) Many of these functions set errno on error, which can lead to a signal handler being executed between a call to a failed function and the subsequent inspection of errno. Consequently, the value inspected is not the one set by that function but the one set by a function call in the signal handler. POSIX applications can avoid this problem by ensuring that signal handlers containing code that might alter errno always save the value of errno on entry and restore it before returning.

The signal handler in this noncompliant code example alters the value of errno, and as a result, it can cause incorrect error handling if executed between a failed function call and the subsequent inspection of errno.

#include <signal.h>
#include <stdlib.h>
#include <errno.h>
#include <sys/wait.h>

void reaper(int signum) {
  errno = 0;
  for (;;) {
    int rc = waitpid(-1, NULL, WNOHANG);
    if ( (0 == rc) || (-1 == rc && EINTR != errno) )
      break;
  }
  if (ECHILD != errno) {
    /* Handle error */
  }
}

int main(void) {
  struct sigaction act;
  act.sa_handler = reaper;
  act.sa_flags = 0;
  if (sigemptyset(&act.sa_mask) != 0) {
    /* Handle error */
  }
  if (sigaction(SIGCHLD, &act, NULL) != 0) {
    /* Handle error */
  }

  /* ... */

  return EXIT_SUCCESS;
}

Compliant Solution (POSIX)

The compliant solution saves and restores the value of errno in the signal handler:

#include <signal.h>
#include <stdlib.h>
#include <errno.h>
#include <sys/wait.h>

void reaper(int signum) {
  int save_errno = errno;
  errno = 0;
  for (;;) {
    int rc = waitpid(-1, NULL, WNOHANG);
    if ( (0 == rc) || (-1 == rc && EINTR != errno) )
      break;
  }
  if (ECHILD != errno) {
    /* Handle error */
  }
  errno = save_errno;
}

int main(void) {
  struct sigaction act;
  act.sa_handler = reaper;
  act.sa_flags = 0;
  if (sigemptyset(&act.sa_mask) != 0) {
    /* Handle error */
  }
  if (sigaction(SIGCHLD, &act, NULL) != 0) {
    /* Handle error */
  }

  /* ... */

  return EXIT_SUCCESS;
}

Risk Assessment

Referencing indeterminate values can result in undefined behavior.

Rule

Severity

Likelihood

Remediation Cost

Priority

Level

ERR32-C

low

unlikely

low

P3

L3

Automated Detection

Tool

Version

Checker

Description

Compass/ROSE

 

 

Could detect violations of this rule by looking for signal handlers that themselves call signal(). A violation is reported if the call fails and the handler therefore checks errno. A violation also exists if the signal handler modifies errno without first copying its value elsewhere

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

Related Guidelines

Bibliography

[ISO/IEC 9899:2011]Section 7.14.1.1, "The signal Function"

 


  • No labels