You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 92 Next »

All integer values originating from tainted sources should be evaluated to determine if they have identifiable upper and lower bounds. If so, these limits should be enforced by the interface. Restricting the input of excessively large or small integers helps prevent overflow, truncation, and other type range errors. Furthermore, it is easier to find and correct input problems than it is to trace internal errors back to faulty inputs.

Noncompliant Code Example

In this noncompliant code example, length is the value of a user-defined (and thus potentially untrusted) environment variable whose value is used to determine the size of a dynamically allocated array, table. In compliance with INT30-C. Ensure that unsigned integer operations do not wrap, the code prevents unsigned integer wrapping but does not impose any upper bound on the size of the array, making it possible for the user to cause the program to use an excessive amount of memory.

char** create_table(void) {
  const char* const lenstr = getenv("TABLE_SIZE");
  const size_t length = lenstr ? strtoul(lenstr, NULL, 10) : 0;

  if (length > SIZE_MAX / sizeof(char *))
    return NULL;   /* Indicate error to caller */

  const size_t table_size = length * sizeof(char *);
  char** const table = (char **)malloc(table_size);

  if (table == NULL)
    return NULL;   /* Indicate error to caller */

  /* Initialize table... */
  return table;
}

Because length is user controlled, the value can result in a large block of memory being allocated or can cause the call to malloc() to fail. Depending on how error handling is implemented, it may result in a denial-of-service attack or other error.

Compliant Solution

This compliant solution defines the acceptable range for length as [1, MAX_TABLE_LENGTH]. The length parameter is declared as size_t, which is unsigned by definition. Consequently, it is not necessary to check length for negative values. (See INT01-C. Use rsize_t or size_t for all integer values representing the size of an object.)

enum { MAX_TABLE_LENGTH = 256 };

char** create_table(void) {
  const char* const lenstr = getenv("TABLE_SIZE");
  const size_t length = lenstr ? strtoul(lenstr, NULL, 10) : 0;

  if (length == 0 || length > MAX_TABLE_LENGTH)
    return NULL;   /* Indicate error to caller */

  const size_t table_size = length * sizeof(char *);
  char** const table = (char **)malloc(table_size);

  if (table == NULL)
    return NULL;   /* Indicate error to caller */

  /* Initialize table... */
  return table;
}

The test for length == 0 ensures that a nonzero number of bytes is allocated. (See MEM04-C. Beware of zero-length allocations.)

Noncompliant Code Example

In this noncompliant example, the tainted integer color_index is used in pointer arithmetic to index into the array table:

const char *table[] = { "black", "white", "blue", "green" };
 
const char *set_background_color(void) {
  int color_index;
  GET_TAINTED_INTEGER(int, color_index);
 
  const char *color = table[color_index];  /* Violation */
 
  /* ... */
  return color;
} 

Compliant Solution

This compliant solution defines the acceptable range for color_index as [1, MAX_COLOR_INDEX]:

enum { MAX_COLOR_INDEX = 3 };
 
const char *table[] = { "black", "white", "blue", "green" };
 
const char *set_background_color(void) {
  int color_index;
  GET_TAINTED_INTEGER(int, color_index);


  if (color_index < 0 || colo_index > MAX_COLOR_INDEX)
    return NULL;   /* Indicate error to caller */ 

  const char *color = table[color_index]; 
 
  /* ... */
  return color;
}

The test for length == 0 ensures that a nonzero number of bytes is allocated. (See MEM04-C. Beware of zero-length allocations.)

Noncompliant Code Example (Heartbleed)

CERT vulnerability 720951 describes a vulnerability in OpenSSL versions 1.0.1 through 1.0.1f, popularly known as "Heartbleed". This vulnerability allows a malicious packet fed to a server using OpenSSL to trick that server into returning up to 64 kilobytes of its internal memory. This memory can contain sensitive information, including cryptographic keys, usernames and passwords.

The vulnerable code appears below:

int dtls1_process_heartbeat(SSL *s) {          
  unsigned char *p = &s->s3->rrec.data[0], *pl;
  unsigned short hbtype;
  unsigned int payload;
  unsigned int padding = 16; /* Use minimum padding */

  /* Read type and payload length first */
  hbtype = *p++;
  n2s(p, payload);
  pl = p;

  /* ... More code ... */

  if (hbtype == TLS1_HB_REQUEST) {
    unsigned char *buffer, *bp;
    int r;

    /* Allocate memory for the response, size is 1 byte
     * message type, plus 2 bytes payload length, plus
     * payload, plus padding
     */
    buffer = OPENSSL_malloc(1 + 2 + payload + padding);
    bp = buffer;

    /* Enter response type, length and copy payload */
    *bp++ = TLS1_HB_RESPONSE;
    s2n(payload, bp);
    memcpy(bp, pl, payload);

    /* ... More code ... */
  }
  /* ... More code ... */
}

This code processes a 'heartbeat' packet from a client. As specified in RFC 6520, when the program receives a heartbeat packet, it must echo the packet's data back to the client. In addition to the data, the packet contains a length field that conventionally indicates the number of bytes in the packet data, but there is nothing to prevent a malicious packet from lying about its data length.

The p pointer, along with payload and p1 contain data from a packet. The code allocates a buffer sufficient to contain payload bytes, with some overhead, and copies payload bytes starting at p1 into this buffer, and sends it to the client. Notably absent are any checks that payload actually indicates the correct size of the memory. Because an attacker can specify an arbitrary value for payload, she can cause this routine to read and return memory beyond the block allocated to p. In this case, the call to memcpy() would also violate ARR38-C. Guarantee that library functions do not form invalid pointers.

 

Compliant Solution (Heartbleed)

OpenSSL version 1.0.1g contains the following patch, which guarantees that payload is within a valid range. The range is limited by the size of the input record.

int dtls1_process_heartbeat(SSL *s) {          
  unsigned char *p = &s->s3->rrec.data[0], *pl;
  unsigned short hbtype;
  unsigned int payload;
  unsigned int padding = 16; /* Use minimum padding */

  /* ... More code ... */

  /* Read type and payload length first */
  if (1 + 2 + 16 > s->s3->rrec.length)
    return 0; /* silently discard */
  hbtype = *p++;
  n2s(p, payload);
  if (1 + 2 + payload + 16 > s->s3->rrec.length)
    return 0; /* silently discard per RFC 6520 */
  pl = p;

  /* ... More code ... */

  if (hbtype == TLS1_HB_REQUEST) {
    unsigned char *buffer, *bp;
    int r;

    /* Allocate memory for the response, size is 1 byte
     * message type, plus 2 bytes payload length, plus
     * payload, plus padding
     */
    buffer = OPENSSL_malloc(1 + 2 + payload + padding);
    bp = buffer;
    /* Enter response type, length and copy payload */
    *bp++ = TLS1_HB_RESPONSE;
    s2n(payload, bp);
    memcpy(bp, pl, payload);
    /* ... More code ... */
  }
  /* ... More code ... */
}

 

Risk Assessment

Failing to enforce the limits on integer values can result in a denial-of-service attack.

Recommendation

Severity

Likelihood

Remediation Cost

Priority

Level

INT04-C

Low

Probable

High

P2

L3

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

Related Guidelines

Bibliography

[Seacord 2013]Chapter 5, "Integer Security"

 


 

  • No labels