The getenv()
function searches an environment list for a string that matches a specified name, and returns a pointer to a string associated with the matched list member.
Section 7.20.4.5 of C99 states: [[ISO/IEC 9899:1999]]
The set of environment names and the method for altering the environment list are implementation-defined.
Depending on the implementation, multiple environment variables with the same name may be allowed and can cause unexpected results if a program cannot consistently choose the same value. The GNU glibc library addresses this issue in getenv()
and setenv()
by always using the first variable it encounters and ignoring the rest. However, it is unwise to rely on this.
One common difference between implementations is whether or not environment variables are case sensitive. While UNIX-like implementations are generally case sensitive, environment variables are "not case sensitive in Windows 98/Me and Windows NT/2000/XP" [[MSDN]].
Duplicate Environment Variable Detection (POSIX)
The following code defines a function that uses the POSIX environ
array to manually search for duplicate key entries. Any duplicate environment variables are considered an attack, so the program immediately terminates if a duplicate is detected.
extern char **environ; int main(void) { if (multiple_vars_with_same_name()) { printf("Someone may be tampering.\n"); return 1; } /* ... */ return 0; } int multiple_vars_with_same_name(void) { size_t i; size_t j; size_t k; size_t l; size_t len_i; size_t len_j; for(i = 0; environ[i] != NULL; i++) { for(j = i; environ[j] != NULL; j++) { if (i != j) { k = 0; l = 0; len_i = strlen(environ[i]); len_j = strlen(environ[j]); while (k < len_i && l < len_j) { if (environ[i][k] != environ[j][l]) break; if (environ[i][k] == '=') return 1; k++; l++; } } } } return 0; }
Noncompliant Code Example
The following noncompliant code behaves differently when compiled and run on Linux and Microsoft Windows platforms.
char *temp; if (putenv("TEST_ENV=foo") != 0) { /* Handle Error */ } if (putenv("Test_ENV=bar") != 0) { /* Handle Error */ } temp = getenv("TEST_ENV"); if (temp == NULL) { /* Handle Error */ } printf("%s\n", temp);
On an IA-32 Linux machine with GCC Compiler Version 3.4.4, this code prints:
foo
Whereas, on an IA-32 Windows XP machine with Microsoft Visual C++ 2008 Express, it prints:
bar
Compliant Solution
Portable code should use environment variables that differ by more than capitalization.
char *temp; if (putenv("TEST_ENV=foo") != 0) { /* Handle Error */ } if (putenv("OTHER_ENV=bar") != 0) { /* Handle Error */ } temp = getenv("TEST_ENV"); if (temp == NULL) { /* Handle Error */ } printf("%s\n", temp);
Risk Assessment
An adversary can create multiple environment variables with the same name by using the POSIX execve()
function, for example. If the program checks one copy but uses another, security checks may be circumvented.
Recommendation |
Severity |
Likelihood |
Remediation Cost |
Priority |
Level |
---|---|---|---|---|---|
ENV02-C |
low |
unlikely |
medium |
P2 |
L3 |
Automated Detection
Compass/ROSE could detect some violations of this rule simply by collecting all environment variables referenced by a program and reporting if two variables differ only by capitalization (eg "TEST" vs "Test"). To collect environment variables, one must scan the program looking for calls to getenv()
, setenv()
, etc.
Related Vulnerabilities
Search for vulnerabilities resulting from the violation of this rule on the CERT website.
References
[[ISO/IEC 9899:1999]] Section 7.20.4, "Communication with the environment"
[[ISO/IEC PDTR 24772]] "XYS Executing or Loading Untrusted Code"
[[MSDN]] getenv()