Weak typing in C allows type casting memory to different types. Because the internal representation of most types is system dependent, applying operations intended for data of one type to data of a different type will likely yield non-portable code and produce unexpected results.
Noncompliant Code Example (Integers vs. Floating-Point Numbers)
The following noncompliant code demonstrates the perils of operating on data of incompatible types. An attempt is made to increment an integer type cast to a floating point type and a floating point cast to an integer type.
float f = 0.0; int i = 0; float *fp; int *ip; assert(sizeof(int) == sizeof(float)); ip = (int*) &f; fp = (float*) &i; printf("int is %d, float is %f\n", i, f); (*ip)++; (*fp)++; printf("int is %d, float is %f\n", i, f);
The expected result is for both values to display as 1
; however, on a 64-bit Linux machine, this program produces:
int is 0, float is 0.000000 int is 1065353216, float is 0.000000
Compliant Solution (Integers vs. Floating-Point Numbers)
In this compliant solution, the pointers are assigned to reference variables of compatible data types.
float f = 0.0; int i = 0; float *fp; int *ip; ip = &i; fp = &f; printf("int is %d, float is %f\n", i, f); (*ip)++; (*fp)++; printf("int is %d, float is %f\n", i, f);
On the same platform, this solution produces the expected output of:
int is 0, float is 0.000000 int is 1, float is 1.000000
Bit-Fields
The internal representations of bit-field structures have several properties (such as internal padding) that are implementation-defined. Additionally, bit-field structures have several implementation-defined constraints:
- The alignment of bit-fields in the storage unit. For example, the bit-fields may be allocated from the high end or the low end of the storage unit.
- Whether or not bit-fields can overlap a storage unit boundary.
Consequently, it is impossible to write portable safe code that makes assumptions regarding the layout of bit-field structure members.
Noncompliant Code Example (Bit-Field Alignment)
Bit-fields can be used to allow flags or other integer values with small ranges to be packed together to save storage space. Bit-fields can improve the storage efficiency of structures. Compilers typically allocate consecutive bit-field structure members into the same int
-sized storage, as long as they fit completely into that storage unit. However, the order of allocation within a storage unit is implementation-defined. Some implementations are "right-to-left": the first member occupies the low-order position of the storage unit. Others are "left-to-right": the first member occupies the high-order position of the storage unit. Calculations that depend on the order of bits within a storage unit may produce different results on different implementations.
Consider the following structure made up of four 8-bit bit-field members.
struct bf { unsigned int m1 : 8; unsigned int m2 : 8; unsigned int m3 : 8; unsigned int m4 : 8; }; /* 32 bits total */
Right-to-left implementations will allocate struct bf
as one storage unit with this format:
m4 m3 m2 m1
Conversely, left-to-right implementations will allocate struct bf
as one storage unit with this format:
m1 m2 m3 m4
The following code behaves differently depending on whether the implementation is left-to-right or right-to-left.
struct bf { unsigned int m1 : 8; unsigned int m2 : 8; unsigned int m3 : 8; unsigned int m4 : 8; }; /* 32 bits total */ void function() { struct bf data; unsigned char *ptr; data.m1 = 0; data.m2 = 0; data.m3 = 0; data.m4 = 0; ptr = (unsigned char *)&data; (*ptr)++; /* can increment data.m1 or data.m4 */ }
Compliant Solution (Bit-Field Alignment)
This compliant solution is explicit in which fields it modifies.
struct bf { unsigned int m1 : 8; unsigned int m2 : 8; unsigned int m3 : 8; unsigned int m4 : 8; }; /* 32 bits total */ void function() { struct bf data; data.m1 = 0; data.m2 = 0; data.m3 = 0; data.m4 = 0; data.m1++; }
Noncompliant Code Example (Bit-Field Overlap)
In the following noncompliant code, assuming eight bits to a byte, if bit-fields of six and four bits are declared, is each bit-field contained within a byte, or are the bit-fields split across multiple bytes?
struct bf { unsigned int m1 : 6; unsigned int m2 : 4; }; void function() { unsigned char *ptr; struct bf data; data.m1 = 0; data.m2 = 0; ptr = (unsigned char *)&data; ptr++; *ptr += 1; /* what does this increment? */ }
If each bit-field lives within its own byte, then m2
(or m1
, depending on alignment) is incremented by 1. If the bit-fields are indeed packed across 8-bit bytes, then m2
might be incremented by 4.
Compliant Solution (Bit-Field Overlap)
This compliant solution is explicit in which fields it modifies.
struct bf { unsigned int m1 : 6; unsigned int m2 : 4; }; void function() { struct bf data; data.m1 = 0; data.m2 = 0; data.m2 += 1; }
Risk Assessment
Making invalid assumptions about the type of type-cast data, especially bit-fields, can result in unexpected data values.
Recommendation |
Severity |
Likelihood |
Remediation Cost |
Priority |
Level |
---|---|---|---|---|---|
EXP11-C |
medium |
probable |
medium |
P8 |
L2 |
Automated Detection
Tool |
Version |
Checker |
Description |
---|---|---|---|
Compass/ROSE |
|
|
can detect violations of this recommendation. Specifically, it reports violations if:
|
Related Vulnerabilities
Search for vulnerabilities resulting from the violation of this recommendation on the CERT website.
Related Guidelines
C++ Secure Coding Standard: EXP11-CPP. Do not apply operators expecting one type to data of an incompatible type
Bibliography
[ISO/IEC 9899:1999] Section 6.7.2, "Type specifiers"
[ISO/IEC PDTR 24772] "STR Bit Representations"
[MISRA 2004] Rule 3.5
[Plum 1985] Rule 6-5