The following attributes of bit-fields are implementation-defined:
- The alignment of bit-fields in the storage unit. For example, the bit-fields may be allocated from the high end or the low end of the storage unit.
- Whether or not bit-fields can overlap a storage unit boundary.
Consequently, it is impossible to write portable code that makes assumptions about the layout of bit-field structures.
Non-Compliant Code Example (Alignment)
Bit-fields can be used to allow flags or other integer values with small ranges to be packed together to save storage space. Bit-fields can improve the storage efficiency of structures. Compilers typically allocate consecutive bit-field structure members into the same int
-sized storage, as long as they fit completely into that storage unit. However, the order of allocation within a storage unit is implementation-defined. Some implementations are "right-to-left": the first member occupies the low-order position of the storage unit. Others are "left-to-right": the first member occupies the high-order position of the storage unit. Calculations that depend on the order of bits within a storage unit may produce different results on different implementations.
Consider the following structure made up of four 8-bit bit-field members.
struct bf { unsigned m1 : 8; unsigned m2 : 8; unsigned m3 : 8; unsigned m4 : 8; }; /* 32 bits total */
Right-to-left implementations will allocate struct bf
as one storage unit with this format:
m4 m3 m2 m1
Conversely, left-to-right implementations will allocate struct bf
as one storage unit with this format:
m1 m2 m3 m4
The following code behaves differently depending on whether the implementation is left-to-right or right-to-left.
struct bf { unsigned m1 : 8; unsigned m2 : 8; unsigned m3 : 8; unsigned m4 : 8; }; /* 32 bits total */ void function() { struct bf data; data.m1 = 0; data.m2 = 0; data.m3 = 0; data.m4 = 0; char* ptr = (char*) &data; (*ptr)++; /* could increment data.m1 or data.m4 */ }
Compliant Solution (Alignment)
This code is explicit about the fields it modifies.
struct bf { unsigned m1 : 8; unsigned m2 : 8; unsigned m3 : 8; unsigned m4 : 8; }; /* 32 bits total */ void function() { struct bf data; data.m1 = 0; data.m2 = 0; data.m3 = 0; data.m4 = 0; data.m1++; }
Non-Compliant Code Example (Overlap)
In this non-compliant example, assuming eight bits to a byte, if bit-fields of six and four bits are declared, is each bit-field contained within a byte or are the bit-fields split across multiple bytes?
struct bf { unsigned m1 : 6; unsigned m2 : 4; }; void function() { struct bf data; data.m1 = 0; data.m2 = 0; char* ptr = (char*) &data; ptr++; *ptr += 1; /* what does this increment? */ }
In the above example, if each bit-field lives within its own byte, then m2 (or m1, depending on alignment) is incremented by 1. If the bit-fields are indeed packed across 8-bit bytes, then m2 might be incremented by 4.
Compliant Solution (Overlap)
struct bf { unsigned m1 : 6; unsigned m2 : 4; }; void function() { struct bf data; data.m1 = 0; data.m2 = 0; data.m2 += 1; }
Risk Assessment
Making invalid assumptions about the type of a bit-field or its layout can result in unexpected data values.
Recommendation |
Severity |
Likelihood |
Remediation Cost |
Priority |
Level |
---|---|---|---|---|---|
INT11-A |
1 (low) |
1 (unlikely) |
2 (medium) |
P2 |
L3 |
Related Vulnerabilities
Search for vulnerabilities resulting from the violation of this rule on the CERT website.
References
[[ISO/IEC 9899-1999]] Section 6.7.2, "Type specifiers"
[[ISO/IEC PDTR 24772]] "BQF Unspecified Behaviour" and "STR Bit Representations"
[[MISRA 04]] Rule 3.5
[[Plum 85]] Rule 6-5
INT10-A. Do not make assumptions about the sign of the remainder when using the % operator 04. Integers (INT) INT12-A. Do not make assumptions about the type of a plain int bit-field when used in an expression