You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 50 Next »

An object is characterized both by its identity (location in memory) and by its state (actual data). The == operator compares only the identities of two objects (to check whether the references refer to the same object); the equals method defined in java.lang.Object can be customized by overriding to compare the state as well. When a class defines an equals() method, the provider has accounted for state comparison. When the class lacks a customized equals() method (either locally declared, or inherited from a parent class), it uses the default Object.equals() implementation that is inherited from Object which compares only the references and may produce conterintuitive results. For example, the classes String and StringBuffer should override the Object.equals() method because they do not provide their own implementation.

The equals() method only applies to objects, not primitives. There is no need to override equals when checking logical equality is not useful. For example, Enumerated types have a fixed set of distinct values that may be compared using == instead of the equals() method. Note that Enumerated types provide an equals() implementation that uses == internally; this default cannot be overridden. More generally, subclasses that both inherit an implementation of equals() from a superclass and also lack a requirement for additional functionality need not override the equals() method.

The general usage contract for equals() as specified by the Java Language Specification [[JLS 2005]] says

  • It is reflexive: For any reference value x, x.equals(x) must return true.
  • It is symmetric: For any reference values x and y, x.equals(y) must return true if and only if y.equals(x) returns true.
  • It is transitive: For any reference values x, y, and z, if x.equals(y) returns true and y.equals(z) returns true, then x.equals(z) must return true.
  • It is consistent: For any reference values x and y, multiple invocations of x.equals(y) consistently return true or consistently return false, provided no information used in equals comparisons on the object is modified.
  • For any non-null reference value x, x.equals(null) must return false.

Never violate any of these conditions when overriding the equals() method. Mistakes resulting from a violation of the first condition are infrequent; it is consequently omitted from this discussion. The second and third conditions are highlighted below. The rule for consistency implies that mutable objects may not satisfy the equals() contract. Consequently, it is good practice to avoid defining equals() implementations that use unreliable data sources such as IP addresses and caches. The most common violation of the final condition regarding comparison with null is equals() methods whose code throws an exception rather than returning false. When this constitutes a security vulnerability (in the form of denial of service), the simple fix is to return false rather than to throw the exception.

Noncompliant Code Example

This noncompliant code example violates the second condition in the contract (symmetry). This requirement means that if one object is equal to another then the other must also be equal to this one. Consider a CaseInsensitiveString class that defines a String and overrides the equals() method. The CaseInsensitiveString knows about ordinary strings but the String class has no idea about case-insensitive strings. As a result, s.equalsIgnoreCase(((CaseInsensitiveString)o).s) returns true but s.equalsIgnoreCase((String)o) always returns false.

public final class CaseInsensitiveString {
  private String s;

  public CaseInsensitiveString(String s) {
    if (s == null) {
      throw new NullPointerException();
    } 
    this.s = s;
  }

  //This method violates asymmetry
  public boolean equals(Object o) {
    if (o instanceof CaseInsensitiveString) {
      return s.equalsIgnoreCase(((CaseInsensitiveString)o).s);
    }

    if (o instanceof String) {
      return s.equalsIgnoreCase((String)o);
    }
    return false;
  }

  public static void main(String[] args) {
    CaseInsensitiveString cis = new CaseInsensitiveString("Java");
    String s = "java";
    System.out.println(cis.equals(s)); // Returns true
    System.out.println(s.equals(cis)); // Returns false
  }
}

Compliant Solution

Do not try to inter-operate with String from within the equals() method. The new equals() method is highlighted in this compliant solution.

public final class CaseInsensitiveString {
  private String s;

  public CaseInsensitiveString(String s) {
    if (s == null) {
      throw new NullPointerException();
    }
    this.s = s;
  }

  public boolean equals(Object o) {
    return o instanceof CaseInsensitiveString &&
    ((CaseInsensitiveString)o).s.equalsIgnoreCase(s);
  }

  public static void main(String[] args) {
    CaseInsensitiveString cis = new CaseInsensitiveString("Java");
    String s = "java";
    System.out.println(cis.equals(s)); // Returns false now
    System.out.println(s.equals(cis)); // Returns false now
  }
}

Noncompliant Code Example

This noncompliant code example violates transitivity though it satisfies the symmetry condition. In the first print statement, the comparison between p1 and p2 returns true, in the second, the comparison between p2 and p3 also returns true but in the third, the comparison between p1 and p3 returns false. This contradicts the transitivity rule.

public class Card {
  private final int number;

  public Card(int number) {
    this.number = number;
  }

  public boolean equals(Object o) {
    if (!(o instanceof Card)) {
      return false;
    } 
    
    Card c = (Card)o;
    return c.number == number;
  }
}

class XCard extends Card {
  private String type;
  public XCard(int number, String type) {
    super(number);
    this.type = type;
  }

  public boolean equals(Object o) {
    if (!(o instanceof Card)) {
      return false;
    } 

    // Normal Card, do not compare type 
    if (!(o instanceof XCard)) {
      return o.equals(this);
    } 

    // It is an XCard, compare type as well
    XCard xc = (XCard)o;
    return super.equals(o) && xc.type == type;
  }	  
  
  public static void main(String[] args) {
    XCard p1 = new XCard(1, "type1"); 
    Card p2 = new Card(1);
    XCard p3 = new XCard(1, "type2");
    System.out.println(p1.equals(p2)); // Returns true
    System.out.println(p2.equals(p3)); // Returns true
    System.out.println(p1.equals(p3)); // Returns false, violating transitivity
  }
}

Compliant Solution

It is currently not possible to extend an instantiable class (as opposed to an abstract class) and add a value or field in the subclass while preserving the equals() contract. This implies that composition must be preferred over inheritance. This technique does qualify as a reasonable workaround [[Bloch 2008]]. It can be implemented by giving the XCard class a private card field and providing a public viewCard() method.

class XCard {
  private String type;
  private Card card; // Composition
  
  public XCard(int number, String type) {
    card = new Card(number);
    this.type = type;
  }
	  
  public Card viewCard() {
    return card;
  }

  public boolean equals(Object o) {
    if (!(o instanceof XCard)) {
      return false;
    }
      
    XCard cp = (XCard)o;
    return cp.card.equals(card) && cp.type.equals(type);
  }
	  
  public static void main(String[] args) {
    XCard p1 = new XCard(1, "type1");
    Card p2 = new Card(1);
    XCard p3 = new XCard(1, "type2");
    XCard p4 = new XCard(1, "type1");
    System.out.println(p1.equals(p2)); // Prints false
    System.out.println(p2.equals(p3)); // Prints false
    System.out.println(p1.equals(p3)); // Prints false
    System.out.println(p1.equals(p4)); // Prints true
  }
}

"There are some classes in the Java platform libraries that do extend an instantiable class and add a value component. For example, java.sql.Timestamp extends java.util.Date and adds a nanoseconds field. The equals implementation for Timestamp does violate symmetry and can cause erratic behavior if Timestamp and Date objects are used in the same collection or are otherwise intermixed." [[Bloch 2008]]

Risk Assessment

Violating the general contract when overriding the equals() method can lead to unexpected results.

Guideline

Severity

Likelihood

Remediation Cost

Priority

Level

MET12-J

low

unlikely

medium

P2

L3

Automated Detection

TODO

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

Bibliography

[[API 2006]] method equals()
[[Bloch 2008]] Item 8: Obey the general contract when overriding equals
[[Darwin 2004]] 9.2 Overriding the equals method


MET11-J. Understand the difference between overriding and hiding      16. Methods (MET)      MET13-J. Ensure that hashCode() is overridden when equals() is overridden

  • No labels