Some C standard library functions are not guaranteed to be reentrant with respect to threads. Functions such as strtok()
and asctime()
return a pointer to the result stored in function-allocated memory on a per-process basis. Other functions such as rand()
store state information in function-allocated memory on a per-process basis. Multiple threads invoking the same function can cause concurrency problems, which often result in abnormal behavior and can cause more serious vulnerabilities, such as abnormal termination, denial-of-service attack, and data integrity violations.
According to the C Standard, the library functions listed in the following table may contain data races when invoked by multiple threads.
Functions | Remediation |
---|---|
rand() , srand() | MSC30-C. Do not use the rand() function for generating pseudorandom numbers |
getenv() , getenv_s() | ENV34-C. Do not store pointers returned by certain functions |
strtok() | strtok_s() in C11 Annex Kstrtok_r() in POSIX |
strerror() | strerror_s() in C11 Annex Kstrerror_r() in POSIX |
asctime() , ctime() ,localtime() , gmtime() | asctime_s() , ctime_s() , localtime_s() , gmtime_s() in C11 Annex K |
setlocale() | Protect multithreaded access to locale-specific functions with a mutex |
ATOMIC_VAR_INIT , atomic_init() | Do not attempt to initialize an atomic variable from multiple threads |
tmpnam() | tmpnam_s() in C11 Annex Ktmpnam_r() in POSIX |
mbrtoc16() , c16rtomb() ,mbrtoc32() , c32rtomb() | Do not call with a null mbstate_t * argument |
Section 2.9.1 of the Portable Operating System Interface (POSIX®), Base Specifications, Issue 7 [IEEE Std 1003.1:2013] extends the list of functions that are not required to be thread-safe.
In this noncompliant code example, the function f()
is called from within a multithreaded application but encounters an error while calling a system function. The strerror()
function returns a human-readable error string given an error number.
The C Standard, 7.26.6.3 paragraph 3 [ISO/IEC 9899:2024], specifically states that strerror()
is not required to avoid data races.
The strerror function is not required to avoid data races with other calls to the strerror function.
An implementation could write the error string into a static array and return a pointer to it, and that array might be accessible and modifiable by other threads.
#include <errno.h> #include <stdio.h> #include <string.h> void f(FILE *fp) { fpos_t pos; errno = 0; if (0 != fgetpos(fp, &pos)) { char *errmsg = strerror(errno); printf("Could not get the file position: %s\n", errmsg); } } |
This code first sets errno
to 0 to comply with ERR30-C. Take care when reading errno.
strerror_s()
) This compliant solution uses the strerror_s()
function from Annex K of the C Standard, which has the same functionality as strerror()
but guarantees thread-safety:
#define __STDC_WANT_LIB_EXT1__ 1 #include <errno.h> #include <stdio.h> #include <string.h> enum { BUFFERSIZE = 64 }; void f(FILE *fp) { fpos_t pos; errno = 0; if (0 != fgetpos(fp, &pos)) { char errmsg[BUFFERSIZE]; if (strerror_s(errmsg, BUFFERSIZE, errno) != 0) { /* Handle error */ } printf("Could not get the file position: %s\n", errmsg); } } |
Because Annex K is optional, strerror_s()
may not be available in all implementations.
strerror_r()
)This compliant solution uses the POSIX strerror_r()
function, which has the same functionality as strerror()
but guarantees thread safety:
#include <errno.h> #include <stdio.h> #include <string.h> enum { BUFFERSIZE = 64 }; void f(FILE *fp) { fpos_t pos; errno = 0; if (0 != fgetpos(fp, &pos)) { char errmsg[BUFFERSIZE]; if (strerror_r(errno, errmsg, BUFFERSIZE) != 0) { /* Handle error */ } printf("Could not get the file position: %s\n", errmsg); } } |
Linux provides two versions of strerror_r()
, known as the XSI-compliant version and the GNU-specific version. This compliant solution assumes the XSI-compliant version, which is the default when an application is compiled as required by POSIX (that is, by defining _POSIX_C_SOURCE
or _XOPEN_SOURCE
appropriately). The strerror_r()
manual page lists versions that are available on a particular system.
Race conditions caused by multiple threads invoking the same library function can lead to abnormal termination of the application, data integrity violations, or a denial-of-service attack.
Rule | Severity | Likelihood | Remediation Cost | Priority | Level |
---|---|---|---|---|---|
CON33-C | Medium | Probable | High | P4 | L3 |
Search for vulnerabilities resulting from the violation of this rule on the CERT website.
Tool | Version | Checker | Description |
---|---|---|---|
Astrée | Supported, but no explicit checker | ||
CodeSonar | BADFUNC.RANDOM.RAND | Use of | |
Compass/ROSE | A module written in Compass/ROSE can detect violations of this rule | ||
Cppcheck Premium | premium-cert-con33-c | ||
Helix QAC | C5037 C++5021 DF4976, DF4977 | ||
Klocwork | CERT.CONC.LIB_FUNC_USE | ||
LDRA tool suite | 44 S | Partially Implemented | |
Parasoft C/C++test | CERT_C-CON33-a | Avoid using thread-unsafe functions | |
PC-lint Plus | 586 | Fully supported | |
CERT C: Rule CON33-C | Checks for data race through standard library function call (rule fully covered) |
Key here (explains table format and definitions)
Taxonomy | Taxonomy item | Relationship |
---|---|---|
CERT C Secure Coding Standard | ERR30-C. Set errno to zero before calling a library function known to set errno, and check errno only after the function returns a value indicating failure | Prior to 2018-01-12: CERT: Unspecified Relationship |
CERT C | CON00-CPP. Avoid assuming functions are thread safe unless otherwise specified | Prior to 2018-01-12: CERT: Unspecified Relationship |
CWE 2.11 | CWE-330 | 2017-06-28: CERT: Partial overlap |
CWE 2.11 | CWE-377 | 2017-06-28: CERT: Partial overlap |
CWE 2.11 | CWE-676 | 2017-05-18: CERT: Rule subset of CWE |
Key here for mapping notes
Independent( MSC30-C, MSC32-C, CON33-C)
Intersection( CWE-330, CON33-C) =
CWE-330 – CON33-C =
CON33-C – CWE-330 =
Intersection( CWE-377, CON33-C) =
CWE-377 – CON33-C =
CON33-C – CWE-377 =
[IEEE Std 1003.1:2013] | Section 2.9.1, "Thread Safety" |
[ISO/IEC 9899:2024] | Subclause 7.26.6.3, "The |
[Open Group 1997b] | Section 10.12, "Thread-Safe POSIX.1 and C-Language Functions" |