Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.
Comment: added parasoft

...

Integer operations will overflow if the resulting value cannot be represented by the underlying representation of the integer. The following table indicates which operations can result in overflow.

Operator

Overflow

Operator

Overflow

Operator

Overflow

Operator

Overflow

+

Yes

-=

Yes

<<

Yes

<

No

-

Yes

*=

Yes

>>

No

>

No

*

Yes

/=

Yes

&

No

>=

No

/

Yes

%=

Yes

|

No

<=

No

%

Yes

<<=

Yes

^

No

==

No

++

Yes

>>=

No

~

No

!=

No

--

Yes

&=

No

!

No

&&

No

=

No

|=

No

unary +

No

||

No

+=

Yes

^=

No

unary -

Yes

?:

No

The following sections examine specific operations that are susceptible to integer overflow. When operating on integer types with less precision than int, integer promotions are applied. The usual arithmetic conversions may also be applied to (implicitly) convert operands to equivalent types before arithmetic operations are performed. Programmers should understand integer conversion rules before trying to implement secure arithmetic operations. (See INT02-C. Understand integer conversion rules.)

...

The C Standard defines the behavior of arithmetic on atomic signed integer types to use two's complement representation with silent wraparound on overflow; there are no undefined results. Although defined, these results may be unexpected and therefore carry similar risks to unsigned integer wrapping. (See INT30-C. Ensure that unsigned integer operations do not wrap.) Consequently, signed integer overflow of atomic integer types should also be prevented or detected. 

 

 



Addition

Addition is between two operands of arithmetic type or between a pointer to an object type and an integer type. This rule applies only to addition between two operands of arithmetic type. (See ARR37-C. Do not add or subtract an integer to a pointer to a non-array object and ARR30-C. Do not form or use out-of-bounds pointers or array subscripts.)

...

Code Block
bgColor#ccccff
langc
#include <limits.h>
 
void f(signed int si_a, signed int si_b) {
  signed int sum;
  if (((si_b > 0) && (si_a > (INT_MAX - si_b))) ||
      ((si_b < 0) && (si_a < (INT_MIN - si_b)))) {
    /* Handle error */
  } else {
    sum = si_a + si_b;
  }
  /* ... */
}

 


Subtraction

Subtraction is between two operands of arithmetic type, two pointers to qualified or unqualified versions of compatible object types, or a pointer to an object type and an integer type. This rule applies only to subtraction between two operands of arithmetic type. (See ARR36-C. Do not subtract or compare two pointers that do not refer to the same array, ARR37-C. Do not add or subtract an integer to a pointer to a non-array object, and ARR30-C. Do not form or use out-of-bounds pointers or array subscripts for information about pointer subtraction.)

...

Code Block
bgColor#ccccff
langc
#include <limits.h>
 
void func(signed int si_a, signed int si_b) {
  signed int diff;
  if ((si_b > 0 && si_a < INT_MIN + si_b) ||
      (si_b < 0 && si_a > INT_MAX + si_b)) {
    /* Handle error */
  } else {
    diff = si_a - si_b;
  }

  /* ... */
}

...


Multiplication

Multiplication is between two operands of arithmetic type.

...

Code Block
bgColor#ccccff
langc
#include <limits.h>
 
void func(signed int si_a, signed int si_b) {
  signed int result;  
  if (si_a > 0) {  /* si_a is positive */
    if (si_b > 0) {  /* si_a and si_b are positive */
      if (si_a > (INT_MAX / si_b)) {
        /* Handle error */
      }
    } else { /* si_a positive, si_b nonpositive */
      if (si_b < (INT_MIN / si_a)) {
        /* Handle error */
      }
    } /* si_a positive, si_b nonpositive */
  } else { /* si_a is nonpositive */
    if (si_b > 0) { /* si_a is nonpositive, si_b is positive */
      if (si_a < (INT_MIN / si_b)) {
        /* Handle error */
      }
    } else { /* si_a and si_b are nonpositive */
      if ( (si_a != 0) && (si_b < (INT_MAX / si_a))) {
        /* Handle error */
      }
    } /* End if si_a and si_b are nonpositive */
  } /* End if si_a is nonpositive */

  result = si_a * si_b;
}

...


Division

Division is between two operands of arithmetic type. Overflow can occur during two's complement signed integer division when the dividend is equal to the minimum (negative) value for the signed integer type and the divisor is equal to −1. Division operations are also susceptible to divide-by-zero errors. (See INT33-C. Ensure that division and remainder operations do not result in divide-by-zero errors.)

...

Code Block
bgColor#ccccff
langc
#include <limits.h>
 
void func(signed long s_a, signed long s_b) {
  signed long result;
  if ((s_b == 0 ) || ((s_a == LONG_MIN) && (s_b == -1))) {
    /* Handle error */
  } else {
    result = s_a % s_b;
  }  
  /* ... */
}

 


Left-Shift Operator

The left-shift operator takes two integer operands. The result of E1 << E2 is E1 left-shifted E2 bit positions; vacated bits are filled with zeros. 

The C Standard, 6.5.7, paragraph 4 [ISO/IEC 9899:2011], states

...

In almost every case, an attempt to shift by a negative number of bits or by more bits than exist in the operand indicates a logic error. These issues are covered by INT34-C. Do not shift an expression by a negative number of bits or by greater than or equal to the number of bits that exist in the operand.

Noncompliant Code Example

This noncompliant code example performs a left shift, after verifying that the number being shifted is not negative, and the number of bits to shift is valid.  The PRECISION() macro and popcount() function provide the correct precision for any integer type. (See INT35-C. Use correct integer precisions.) However, because this code does no overflow check, it can result in an unrepresentable value. 

...

Compliant Solution

This compliant solution eliminates the possibility of overflow resulting from a left-shift operation:

...

Integer overflow can lead to buffer overflows and the execution of arbitrary code by an attacker.

Rule

Severity

Likelihood

Remediation Cost

Priority

Level

INT32-C

High

Likely

High

P9

L2

Automated Detection

Tool

Version

Checker

Description

Astrée
Include Page
Astrée_V
Astrée_V

integer-overflow

Fully checked
CodeSonar
Include Page
CodeSonar_V
CodeSonar_V

ALLOC.SIZE.ADDOFLOW
ALLOC.SIZE.IOFLOW
ALLOC.SIZE.MULOFLOW
ALLOC.SIZE.SUBUFLOW
MISC.MEM.SIZE.ADDOFLOW
MISC.MEM.SIZE.BAD
MISC.MEM.SIZE.MULOFLOW
MISC.MEM.SIZE.SUBUFLOW

Addition overflow of allocation size
Integer overflow of allocation size
Multiplication overflow of allocation size
Subtraction underflow of allocation size
Addition overflow of size
Unreasonable size argument
Multiplication overflow of size
Subtraction underflow of size

Coverity
Include Page
Coverity_V
Coverity_V

TAINTED_SCALAR

BAD_SHIFT

Implemented
LDRA tool suite
Include Page
LDRA_V
LDRA_V

493 S, 494 S

Partially implemented
Parasoft C/C++test

Include Page
Parasoft_V
Parasoft_V

BD-PB-INTOVERF, PB-66_a, PB-66_bImplemented
Polyspace Bug FinderR2016a

Integer overflow, Tainted division operand

Overflow from operation between integers

Division / operands from an unsecure source

PRQA QA-C
Include Page
PRQA QA-C_v
PRQA QA-C_v

2800, 2801, 2802, 2803,2860,2861,2862,2863

Fully implemented
PRQA QA-C++
Include Page
cplusplus:PRQA QA-C++_V
cplusplus:PRQA QA-C++_V
2791, 2792, 2793, 2800, 2801, 2802, 2803
 

RuleChecker
Include Page
RuleChecker_V
RuleChecker_V
integer-overflowFully checked

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

...

Key here (explains table format and definitions)

Taxonomy

Taxonomy item

Relationship

CERT CINT02-C. Understand integer conversion rulesPrior to 2018-01-12: CERT: Unspecified Relationship
CERT CINT35-C. Use correct integer precisionsPrior to 2018-01-12: CERT: Unspecified Relationship
CERT CINT33-C. Ensure that division and remainder operations do not result in divide-by-zero errorsPrior to 2018-01-12: CERT: Unspecified Relationship
CERT CINT34-C. Do not shift an expression by a negative number of bits or by greater than or equal to the number of bits that exist in the operandPrior to 2018-01-12: CERT: Unspecified Relationship
CERT CARR30-C. Do not form or use out-of-bounds pointers or array subscriptsPrior to 2018-01-12: CERT: Unspecified Relationship
CERT CARR36-C. Do not subtract or compare two pointers that do not refer to the same arrayPrior to 2018-01-12: CERT: Unspecified Relationship
CERT CARR37-C. Do not add or subtract an integer to a pointer to a non-array objectPrior to 2018-01-12: CERT: Unspecified Relationship
CERT CMSC15-C. Do not depend on undefined behaviorPrior to 2018-01-12: CERT: Unspecified Relationship
CERT CCON08-C. Do not assume that a group of calls to independently atomic methods is atomicPrior to 2018-01-12: CERT: Unspecified Relationship
CERT Oracle Secure Coding Standard for JavaINT00-J. Perform explicit range checking to avoid integer overflowPrior to 2018-01-12: CERT: Unspecified Relationship
ISO/IEC TR 24772:2013Arithmetic Wrap-Around Error [FIF]Prior to 2018-01-12: CERT: Unspecified Relationship
ISO/IEC TS 17961Overflowing signed integers [intoflow]Prior to 2018-01-12: CERT: Unspecified Relationship
CWE 2.11CWE-190, Integer Overflow or Wraparound2017-05-18: CERT: Partial overlap
CWE 2.11CWE-1912017-05-18: CERT: Partial overlap
CWE 2.11CWE-6802017-05-18: CERT: Partial overlap

CERT-CWE Mapping Notes

Key here for mapping notes

...

  • Underflow of signed integer operation


Bibliography

[Dowd 2006]Chapter 6, "C Language Issues" ("Arithmetic Boundary Conditions," pp. 211–223)
[ISO/IEC 9899:2011]Subclause 6.5.5, "Multiplicative Operators"
[Seacord 2013b]Chapter 5, "Integer Security"
[Viega 2005]Section 5.2.7, "Integer Overflow"
[Warren 2002]Chapter 2, "Basics"

...


...