...
the element count of the pointer p
is sizeof(arr) / sizeof(arr[0])
, that is, 5
. The element count of the pointer p2
is sizeof(arr)
, that is, 20
, on implementations where sizeof(int) == 4
. The element count of the pointer p3
is 12
on implementations where sizeof(int) == 4
, because p3
points two elements past the start of the array arr
. The element count of p4
is treated as though it were unsigned char *
instead of void *
, so it is the same as p2
.
Pointer + Integer
The following standard library functions take a pointer argument and a size argument, with the constraint that the pointer must point to a valid memory object of at least the number of elements indicated by the size argument.
...
For calls that take a pointer and an integer size, the given size should not be greater than the element count of the pointer.
Noncompliant Code Example (Element Count)
In this noncompliant code example, the incorrect element count is used in a call to wmemcpy()
. The sizeof
operator returns the size expressed in bytes, but wmemcpy()
uses an element count based on wchar_t *
.
Code Block | ||
---|---|---|
| ||
#include <string.h> #include <wchar.h> static const char str[] = "Hello world"; static const wchar_t w_str[] = L"Hello world"; void func(void) { char buffer[32]; wchar_t w_buffer[32]; memcpy(buffer, str, sizeof(str)); /* Compliant */ wmemcpy(w_buffer, w_str, sizeof(w_str)); /* Noncompliant */ } |
Compliant Solution (Element Count)
When using functions that operate on pointed-to regions, programmers must always express the integer size in terms of the element count expected by the function. For example, memcpy()
expects the element count expressed in terms of void *
, but wmemcpy()
expects the element count expressed in terms of wchar_t *
. Instead of the sizeof
operator, functions that return the number of elements in the string are called, which matches the expected element count for the copy functions. In the case of this compliant solution, where the argument is an array A
of type T
, the expression sizeof(A) / sizeof(T)
, or equivalently sizeof(A) / sizeof(*A)
, can be used to compute the number of elements in the array.
Code Block | ||
---|---|---|
| ||
#include <string.h> #include <wchar.h> static const char str[] = "Hello world"; static const wchar_t w_str[] = L"Hello world"; void func(void) { char buffer[32]; wchar_t w_buffer[32]; memcpy(buffer, str, strlen(str) + 1); wmemcpy(w_buffer, w_str, wcslen(w_str) + 1); } |
Noncompliant Code Example (Pointer + Integer)
This noncompliant code example assigns a value greater than the number of bytes of available memory to n
, which is then passed to memset()
:
Code Block | ||
---|---|---|
| ||
#include <stdlib.h> #include <string.h> void f1(size_t nchars) { char *p = (char *)malloc(nchars); /* ... */ const size_t n = nchars + 1; /* ... */ memset(p, 0, n); } |
Compliant Solution (Pointer + Integer)
This compliant solution ensures that the value of n
is not greater than the number of bytes of the dynamic memory pointed to by the pointer p
:
Code Block | ||
---|---|---|
| ||
#include <stdlib.h> #include <string.h> void f1(size_t nchars) { char *p = (char *)malloc(nchars); /* ... */ const size_t n = nchars; /* ... */ memset(p, 0, n); } |
Noncompliant Code Example (Pointer + Integer)
In this noncompliant code example, the element count of the array a
is ARR_SIZE
elements. Because memset()
expects a byte count, the size of the array is scaled incorrectly by sizeof(int)
instead of sizeof(long)
, which can form an invalid pointer on architectures where sizeof(int) != sizeof(long)
.
Code Block | ||
---|---|---|
| ||
#include <string.h> void f2(void) { const size_t ARR_SIZE = 4; long a[ARR_SIZE]; const size_t n = sizeof(int) * ARR_SIZE; void *p = a; memset(p, 0, n); } |
Compliant Solution (Pointer + Integer)
In this compliant solution, the element count required by memset()
is properly calculated without resorting to scaling:
Code Block | ||
---|---|---|
| ||
#include <string.h> void f2(void) { const size_t ARR_SIZE = 4; long a[ARR_SIZE]; const size_t n = sizeof(a); void *p = a; memset(p, 0, n); } |
Two Pointers + One Integer
The following standard library functions take two pointer arguments and a size argument, with the constraint that both pointers must point to valid memory objects of at least the number of elements indicated by the size argument.
...
For calls that take two pointers and an integer size, the given size should not be greater than the element count of either pointer.
Noncompliant Code Example (Two Pointers + One Integer)
In this noncompliant code example, the value of n
is incorrectly computed, allowing a read past the end of the object referenced by q
:
Code Block | ||
---|---|---|
| ||
#include <string.h> void f4() { char p[40]; const char *q = "Too short"; size_t n = sizeof(p); memcpy(p, q, n); } |
Compliant Solution (Two Pointers + One Integer)
This compliant solution ensures that n
is equal to the size of the character array:
Code Block | ||
---|---|---|
| ||
#include <string.h> void f4() { char p[40]; const char *q = "Too short"; size_t n = sizeof(p) < strlen(q) + 1 ? sizeof(p) : strlen(q) + 1; memcpy(p, q, n); } |
One Pointer + Two Integers
The following standard library functions take a pointer argument and two size arguments, with the constraint that the pointer must point to a valid memory object containing at least as many bytes as the product of the two size arguments.
...
For calls that take a pointer and two integers, one integer represents the number of bytes required for an individual object, and a second integer represents the number of elements in the array. The resulting product of the two integers should not be greater than the element count of the pointer were it expressed as an unsigned char *
.
Noncompliant Code Example (One Pointer + Two Integers)
This noncompliant code example allocates a variable number of objects of type struct obj
. The function checks that num_objs
is small enough to prevent wrapping, in compliance with INT30-C. Ensure that unsigned integer operations do not wrap. The size of struct obj
is assumed to be 16 bytes to account for padding to achieve the assumed alignment of long long
. However, the padding typically depends on the target architecture, so this object size may be incorrect, resulting in an incorrect element count.
Code Block | ||
---|---|---|
| ||
#include <stdint.h> #include <stdio.h> struct obj { char c; long long i; }; void func(FILE *f, struct obj *objs, size_t num_objs) { const size_t obj_size = 16; if (num_objs > (SIZE_MAX / obj_size) || num_objs != fwrite(objs, obj_size, num_objs, f)) { /* Handle error */ } } |
Compliant Solution (One Pointer + Two Integers)
This compliant solution uses the sizeof
operator to correctly provide the object size and num_objs
to provide the element count:
Code Block | ||
---|---|---|
| ||
#include <stdint.h> #include <stdio.h> struct obj { char c; long long i; }; void func(FILE *f, struct obj *objs, size_t num_objs) { const size_t obj_size = sizeof *objs; if (num_objs > (SIZE_MAX / obj_size) || num_objs != fwrite(objs, obj_size, num_objs, f)) { /* Handle error */ } } |
Noncompliant Code Example (One Pointer + Two Integers)
In this noncompliant code example, the function f()
calls fread()
to read nitems
of type wchar_t
, each size
bytes in size, into an array of BUFFER_SIZE
elements, wbuf
. However, the expression used to compute the value of nitems
fails to account for the fact that, unlike the size of char
, the size of wchar_t
may be greater than 1. Consequently, fread()
could attempt to form pointers past the end of wbuf
and use them to assign values to nonexistent elements of the array. Such an attempt is undefined behavior (see undefined behavior 109). A likely consequence of this undefined behavior is a buffer overflow. For a discussion of this programming error in the Common Weakness Enumeration database, see CWE-121, "Stack-based Buffer Overflow," and CWE-805, "Buffer Access with Incorrect Length Value."
Code Block | ||||
---|---|---|---|---|
| ||||
#include <stddef.h> #include <stdio.h> void f(FILE *file) { enum { BUFFER_SIZE = 1024 }; wchar_t wbuf[BUFFER_SIZE]; const size_t size = sizeof(*wbuf); const size_t nitems = sizeof(wbuf); size_t nread = fread(wbuf, size, nitems, file); /* ... */ } |
Compliant Solution (One Pointer + Two Integers)
This compliant solution correctly computes the maximum number of items for fread()
to read from the file:
Code Block | ||||
---|---|---|---|---|
| ||||
#include <stddef.h> #include <stdio.h> void f(FILE *file) { enum { BUFFER_SIZE = 1024 }; wchar_t wbuf[BUFFER_SIZE]; const size_t size = sizeof(*wbuf); const size_t nitems = sizeof(wbuf) / size; size_t nread = fread(wbuf, size, nitems, file); /* ... */ } |
Noncompliant Code Example (Heartbleed)
CERT vulnerability 720951 describes a vulnerability in OpenSSL versions 1.0.1 through 1.0.1f, popularly known as "Heartbleed." This vulnerability allows an attacker to steal information that under normal conditions would be protected by Secure Socket Layer/Transport Layer Security (SSL/TLS) encryption.
...
The p
pointer, along with payload
and p1
, contain data from a packet. The code allocates a buffer
sufficient to contain payload
bytes, with some overhead, then copies payload
bytes starting at p1
into this buffer and sends it to the client. Notably absent from this code are any checks that the payload integer variable extracted from the heartbeat packet corresponds to the size of the packet data. Because the client can specify an arbitrary value of payload
, an attacker can cause the server to read and return the contents of memory beyond the end of the packet data, which violates INT04-C. Enforce limits on integer values originating from tainted sources. The resulting call to memcpy()
can then copy the contents of memory past the end of the packet data and the packet itself, potentially exposing sensitive data to the attacker. This call to memcpy()
violates ARR38-C. Guarantee that library functions do not form invalid pointers. A version of ARR38-C also appears in ISO/IEC TS 17961:2013, "Forming invalid pointers by library functions [libptr]." This rule would require a conforming analyzer to diagnose the Heartbleed vulnerability.
Compliant Solution (Heartbleed)
OpenSSL version 1.0.1g contains the following patch, which guarantees that payload
is within a valid range. The range is limited by the size of the input record.
Code Block | ||||
---|---|---|---|---|
| ||||
int dtls1_process_heartbeat(SSL *s) { unsigned char *p = &s->s3->rrec.data[0], *pl; unsigned short hbtype; unsigned int payload; unsigned int padding = 16; /* Use minimum padding */ /* ... More code ... */ /* Read type and payload length first */ if (1 + 2 + 16 > s->s3->rrec.length) return 0; /* Silently discard */ hbtype = *p++; n2s(p, payload); if (1 + 2 + payload + 16 > s->s3->rrec.length) return 0; /* Silently discard per RFC 6520 */ pl = p; /* ... More code ... */ if (hbtype == TLS1_HB_REQUEST) { unsigned char *buffer, *bp; int r; /* * Allocate memory for the response; size is 1 byte * message type, plus 2 bytes payload length, plus * payload, plus padding. */ buffer = OPENSSL_malloc(1 + 2 + payload + padding); bp = buffer; /* Enter response type, length, and copy payload */ *bp++ = TLS1_HB_RESPONSE; s2n(payload, bp); memcpy(bp, pl, payload); /* ... More code ... */ } /* ... More code ... */ } |
Risk Assessment
...