...
- When the exception handling mechanism, after completing the initialization of the exception object but before activation of a handler for the exception, calls a function that exits via an exception. ([except.throw], paragraph 7)
- When a throw-expression with no operand attempts to rethrow an exception and no exception is being handled. ([except.throw], paragraph 9)
- When the exception handling mechanism cannot find a handler for a thrown exception. ([except.handle], paragraph 9)
- When the search for a handler encounters the outermost block of a function with a noexcept-specification that does not allow the exception. ([except.spec], paragraph 9)
- See ERR37-CPP. Honor exception specifications for more information
- When the destruction of an object during stack unwinding terminates by throwing an exception. ([except.ctor], paragraph 3)
- When initialization of a non-local variable with static or thread storage duration exits via an exception. ([basic.start.init], paragraph 6)
- See ERR41-CPP. Constructors of objects with static or thread storage duration must not throw exceptions for more information.
- When destruction of an object with static or thread storage duration exits via an exception. ([basic.start.term], paragraph 1)
- When execution of a function registered with
std::atexit()
orstd::at_quick_exit()
exits via an exception. ([support.start.term], paragraphs 8 and 12) - When the implementation’s default unexpected exception handler is called. ([except.unexpected], paragraph 2) Note that
std::unexpected()
is currently deprecated; see MSC23-CPP. Do not use deprecated or obsolescent functionality for further information. - When
std::unexpected()
throws an exception which is not allowed by the previously violated dynamic-exception-specification, andstd::bad_exception()
is not included in that dynamic-exception-specification. ([except.unexpected], paragraph 3) - When the function
std::nested_exception::rethrow_nested()
is called for an object that has captured no exception. ([except.nested], paragraph 4) - When execution of the initial function of a thread exits via an exception. ([thread.thread.constr], paragraph 5)
- When the destructor is invoked on an object of type
std::thread
that refers to a joinable thread. ([thread.thread.destr], paragraph 1) - When the copy assignment operator is invoked on an object of type
std::thread
that refers to a joinable thread. ([thread.thread.assign], paragraph 1) - When calling
condition_variable::wait()
,condition_variable::wait_until()
, orcondition_variable::wait_for()
results in a failure to meet the post-condition:lock.owns_lock() == true
orlock.mutex()
is not locked by the calling thread. ([thread.condition.condvar], paragraphs 11, 16, 21, 28, 33, and 40) - When calling
condition_variable_any::wait()
,condition_variable_any::wait_until()
, orcondition_variable_any::wait_for()
results in a failure to meet the post-condition:lock
is not locked by the calling thread. ([thread.condition.condvarany], paragraphs 11, 16, and 22)
...
It is acceptable to call std::abort()
, std::_Exit()
, or std::terminate()
in response to a critical program error for which no recovery is possible, after indicating the nature of the problem to the operator. See also ERR04-CPP. Choose an appropriate termination strategy.
Noncompliant Code Example
...