Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

While Java strings are stored as an array of characters , and can be represented as an array of bytes, a single character in the string might be represented by two or more consecutive elements of type byte or of type char. Splitting a char or byte array risks splitting a multibyte character.

...

Multibyte encodings such as UTF-8 are used for character sets that require more than one byte to uniquely identify each constituent character. For example, the Japanese encoding Shift-JIS (shown below) , supports multibyte encoding wherein the maximum character length is two bytes (one leading and one trailing byte).

Byte Type

Range

single-byte

0x00 through 0x7F and 0xA0 through 0xDF

lead-byte

0x81 through 0x9F and 0xE0 through 0xFC

trailing-byte

0x40-0x7E and 0x80-0xFC

Wiki Markup
The trailing byte ranges overlap the range of both the single byte and lead byte characters. When a multibyte character is separated across a buffer boundary, it can be interpreted differently than if it were not separated across the buffer boundary; this difference arises because of the ambiguity of its composing bytes \[[Phillips 2005|AA. Bibliography#Phillips 05]\]. 

Supplementary Characters

Wiki Markup
According to the Java API \[[API 2006|AA. Bibliography#API 06]\], class {{Character}} documentation (Unicode Character Representations):

The char data type (and consequently the value that a Character object encapsulates) are based on the original Unicode specification, which defined characters as fixed-width 16-bit entities. The Unicode standard has since been changed to allow for characters whose representation requires more than 16 bits. The range of legal code points is now U+0000 to U+10FFFF, known as Unicode scalar value.

The Java 2 platform uses the UTF-16 representation in char arrays and in the String and StringBuffer classes. In this representation, supplementary characters are represented as a pair of char values, the first from the high-surrogates range, (\uD800-\uDBFF), the second from the low-surrogates range (\uDC00-\uDFFF).

An int value represents all Unicode code points, including supplementary code points. The lower (least significant) 21 bits of int are used to represent Unicode code points, and the upper (most significant) 11 bits must be zero. Unless otherwise specified, the behavior with respect to supplementary characters and surrogate char values is as follows:

  • The methods that only accept a char value cannot support supplementary characters. They treat char values from the surrogate ranges as undefined characters. For example, Character.isLetter('\uD840') returns false, even though this specific value if followed by any low-surrogate value in a string would represent a letter.
  • The methods that accept an int value support all Unicode characters, including supplementary characters. For example, Character.isLetter(0x2F81A) returns true because the code point value represents a letter (a CJK ideograph).

...

This code fails to consider the interaction between characters represented with a multi-byte multibyte encoding and the boundaries between the loop iterations. If the last byte read from the data stream in one read() operation is the leading byte of a multibyte character, the trailing bytes are not encountered until the next iteration of the while loop. However, multi-byte multibyte encoding is resolved during construction of the new String within the loop. Consequently, the multibyte encoding is interpreted incorrectly.

...

This compliant solution uses a Reader rather than an InputStream. The Reader class converts bytes into characters on the fly, so it avoids the hazard of splitting multibyte characters. This routine will abort if the socket provides more than 1024 characters , rather than 1024 bytes.

Code Block
bgColor#ccccff
public final int MAX_SIZE = 1024;

public String readBytes(Socket socket) throws IOException {
  InputStream in = socket.getInputStream();
  Reader r = new InputStreamReader(in, "UTF-8");
  char[] data = new char[MAX_SIZE+1];
  int offset = 0;
  int charsRead = 0;
  String str = new String(data);
  while ((charsRead = r.read(data, offset, data.length - offset)) != -1) {
    offset += charsRead;
    str += new String(data, offset, data.length - offset);
    if (offset >= data.length) {
      throw new IOException("Too much input");
    }
  }
  in.close();
  return str;
}

...

Code Block
bgColor#FFcccc
// Fails for supplementary or combining characters
public static String trim_bad1(String string) {
  char ch;
  int i;
  for (i = 0; i < string.length(); i += 1) {
    ch = string.charAt(i);
    if (!Character.isLetter(ch)) {
      break;
    }
  }
  return string.substring(i);
}

Noncompliant Code Example (

...

Substring)

Wiki Markup
This noncompliant code example attempts to fix the problem by using the {{String.codePointAt()}} method, which accepts an {{int}} argument. This works for supplementary characters but fails for combining characters \[[Hornig 2007|AA. Bibliography#Hornig 07]\].

...

Wiki Markup
This compliant solution works both for supplementary and for combining characters \[[Hornig 2007|AA. Bibliography#Hornig 07]\]. According to the Java API \[[API 2006|AA. Bibliography#API 06]\], class {{java.text.BreakIterator}} documentation:

The BreakIterator class implements methods for finding the location of boundaries in text. Instances of BreakIterator maintain a current position and scan over text returning the index of characters where boundaries occur.

The boundaries returned may be those of supplementary characters, combining character sequences, or ligature clusters. For example, an accented character might be stored as a base character and a diacritical mark.

...

<ac:structured-macro ac:name="unmigrated-wiki-markup" ac:schema-version="1" ac:macro-id="deec617c81f2dba1-ca7cead1-435b48d0-9bac8750-00eee1e1452d44dd676b67d8"><ac:plain-text-body><![CDATA[

[[API 2006

AA. Bibliography#API 06]]

Classes Character and BreakIterator

]]></ac:plain-text-body></ac:structured-macro>

<ac:structured-macro ac:name="unmigrated-wiki-markup" ac:schema-version="1" ac:macro-id="60d9b0841539eaf1-02ad946a-485d46fb-a81780e2-31db4b43f5abd64897a95fd7"><ac:plain-text-body><![CDATA[

[[Hornig 2007

AA. Bibliography#Hornig 07]]

Problem areas: Characters

]]></ac:plain-text-body></ac:structured-macro>

...