Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

Thread-safety guarantees that no two threads can simultaneously access or modify some shared data. However, if two or more operations need to be performed safely, it becomes necessary to enforce atomicity. It is possible for two threads to read some shared value, independently perform operations on it and induce a race condition while storing the final result. For example, programmers sometimes assume that a thread-safe Collection does not require explicit synchronization which is a misleading thought. It follows that using a thread-safe Collection by itself may not ensure program correctness.

Noncompliant Code Example

This noncompliant code example is comprised of an ArrayList collection which is non-thread-safe by default. There is, however, a way around this drawback. Most thread-unsafe classes have a synchronized thread-safe version, for example, Collections.synchronizedList is a good substitute for ArrayList and Collections.synchronizedMap is a good alternative to HashMap. The atomicity pitfall described in the coming lines, remains to be addressed even when the particular Collection offers thread-safety benefits.

...

Code Block
bgColor#FFCCCC
class RaceCollection implements Runnable {
  private List<InetAddress> ips = Collections.synchronizedList(new ArrayList<InetAddress>());
  
  public void addIPAddress(InetAddress ia) {
    synchronized(ips) {
      ips.add(ia);
    }
  }

  public void removeIPAddress(InetAddress ia) {
    synchronized(ips) {
      ips.remove(ia);
    }
  }

  public void nonAtomic() throws InterruptedException {
    InetAddress[] ia;   

    synchronized(ips) {
      ia = (InetAddress[]) ips.toArray(new InetAddress[0]);     
    }
         
    // This statement should be in the synchronized block above 
    System.out.println("Number of IPs: " + ia.length); 
  }
  
  public void run() {
    try {
      addIPAddress(InetAddress.getLocalHost());
      nonAtomic();
    } catch (UnknownHostException e) { /* Forward to handler */ }
      catch (InterruptedException e) { /* Forward to handler */ }		
  }
  
  public static void main(String[] args) {
    RaceCollection rc1 = new RaceCollection();
    for(int i = 0; i < 2; i++) {
      new Thread(rc1).start();
    }	  	  
  }
}

Compliant Solution

Wiki Markup
To eliminate the race condition, ensure atomicity. This can be achieved by including all statements that use the array list within the synchronized block. This technique is also called client-side locking. \[[Goetz 06|AA. Java References#Goetz 06]\]

...

Wiki Markup
Although expensive, {{CopyOnWriteArrayList}} and {{CopyOnWriteArraySet}} classes are sometimes used to create copies of the core {{Collection}} so that iterators do not fail with a runtime exception when some data in the {{Collection}} is modified. These however, suffer from the {{toArray}} dilemma (operating on stale data) described earlier in this rule. Consequently, their use is limited to boosting performance in code where the writes are fewer (or non-existent) as compared to the reads  \[[JavaThreads 04|AA. Java References#JavaThreads 04]\]. In all other cases they must be avoided.    

Compliant Solution

Wiki Markup
Composition offers more benefits as compared to the previous solution, although at the cost of a slight performance penalty (refer to [OBJ07-J. Understand how a superclass can affect a subclass] for details on how to implement composition). This allows the {{CompositeCollection}} class to use its own intrinsic lock in a way that is completely independent of the lock of the underlying list class. This provides consistent locking even when the underlying list is not thread-safe or when it changes its locking policy. \[[Goetz 06|AA. Java References#Goetz 06]\]

...

Extension is more fragile than adding code directly to a class, because the implementation of the synchronization policy is now distributed over multiple, separately maintained source files. If the underlying class were to change its synchronization policy by choosing a different lock to guard its state variables, the subclass would subtly and silently break, because it no longer used the right lock to control concurrent access to the base class's state.

Noncompliant Code Example

Wiki Markup
This noncompliant code example defines a thread-unsafe {{KeyedCounter}} class. Even though the {{HashMap}} field is synchronized, the overall {{increment}} operation is not atomic. \[[Lee 09|AA. Java References#Lee 09]\]   

Code Block
bgColor#FFCCCC
public class KeyedCounter {
  private Map<String, Integer> map =
    Collections.synchronizedMap(new HashMap<String, Integer>());

  public void increment(String key) {
    Integer old = map.get(key);
    int value = (old == null) ? 1 : old.intValue() + 1;
    map.put(key, value);
  }

  public Integer getCount(String key) {
    return map.get(key);
  }
}

Compliant Solution

Wiki Markup
This compliant solution declares the {{increment()}} method as {{synchronized}} to ensure atomicity. \[[Lee 09|AA. Java References#Lee 09]\] 

Code Block
bgColor#ccccff
public class KeyedCounter {
  private Map<String,Integer> map = new HashMap<String,Integer>();
 
  public synchronized void increment(String key) {
    Integer old = map.get(key);
    int value = (old == null) ? 1 : old.intValue()+1;
    map.put(key, value);
  }

  public synchronized Integer getCount(String key) {
    return map.get(key);
  }
}

Compliant Solution

Wiki Markup
The previous compliant solution does not scale very well because a class with several {{synchronized}} methods is a potential bottleneck as far as acquiring locks is concerned and may further lead to contention or deadlock. The class {{ConcurrentHashMap}}, through a more preferable approach, provides several utility methods to perform atomic operations and is used in this compliant solution \[[Lee 09|AA. Java References#Lee 09]\]. According to Goetz et al. \[[Goetz 06|AA. Java References#Goetz 06]\] section 5.2.1. ConcurrentHashMap:

...

Code Block
bgColor#ccccff
public class KeyedCounter {
  private final ConcurrentMap<String, AtomicInteger> map =
    new ConcurrentHashMap<String, AtomicInteger>();

  public void increment(String key) {
    AtomicInteger value = new AtomicInteger(0);
    AtomicInteger old = map.putIfAbsent(key, value);
   
    if (old != null) { 
      value = old; 
    }

    value.incrementAndGet(); // Increment the value atomically
  }

  public Integer getCount(String key) {
    AtomicInteger value = map.get(key);
    return (value == null) ? null : value.get();
  }
}

Risk Assessment

Non-atomic code can induce race conditions and affect program correctness.

Rule

Severity

Likelihood

Remediation Cost

Priority

Level

CON38- J

low

probable

medium

P4

L3

Automated Detection

TODO

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

Wiki Markup
\[[API 06|AA. Java References#API 06]\] Class Vector, Class WeakReference
\[[JavaThreads 04|AA. Java References#JavaThreads 04]\] 8.2 "Synchronization and Collection Classes"
\[[Goetz 06|AA. Java References#Goetz 06]\] 4.4.1. Client-side Locking, 4.4.2. Composition and 5.2.1. ConcurrentHashMap
\[[Lee 09|AA. Java References#Lee 09]\] "Map &amp; Compound Operation"

...