...
The
char
data type (and consequently the value that aCharacter
object encapsulates) are based on the original Unicode specification, which defined characters as fixed-width 16-bit entities. The Unicode standard has since been changed to allow for characters whose representation requires more than 16 bits. The range of legal code points is now U+0000 to U+10FFFF\u0000 to \u10FFFF, known as Unicode scalar value.The Java 2 platform uses the UTF-16 representation in
char
arrays and in theString
andStringBuffer
classes. In this representation, supplementary characters are represented as a pair ofchar
values, the first from the high-surrogates range, (\uD800-\uDBFF), the second from the low-surrogates range (\uDC00-\uDFFF).An
int
value represents all Unicode code points, including supplementary code points. The lower (least significant) 21 bits ofint
are used to represent Unicode code points, and the upper (most significant) 11 bits must be zero. Unless otherwise specified, the behavior with respect to supplementary characters and surrogate char values is as follows:
- The methods that only accept a
char
value cannot support supplementary characters. They treatchar
values from the surrogate ranges as undefined characters. For example,Character.isLetter('\uD840')
returnsfalse
, even though this specific value if followed by any low-surrogate value in a string would represent a letter.- The methods that accept an
int
value support all Unicode characters, including supplementary characters. For example,Character.isLetter(0x2F81A)
returnstrue
because the code point value represents a letter (a CJK ideograph).
...
This noncompliant code example tries to read up to 1024 bytes from a socket and build a String
from them. It does this by reading the bytes in a while loop, as recommended by FIO10-J. Ensure the array is filled when using read() to fill an array. If it ever detects that the socket has more than 1024 bytes available, it throws an exception. This prevents untrusted input from potentially exhausting the program's memory.
...
<ac:structured-macro ac:name="unmigrated-wiki-markup" ac:schema-version="1" ac:macro-id="f95c0c7fa4cb0203-104655d1-4fc74386-b524a01d-934a19d6d210574a78af694d"><ac:plain-text-body><![CDATA[ | [[API 2006 | AA. Bibliography#API 06]] | Classes | ]]></ac:plain-text-body></ac:structured-macro> |
<ac:structured-macro ac:name="unmigrated-wiki-markup" ac:schema-version="1" ac:macro-id="428bd0b80d4ce1d0-32ba9925-47e2404f-9764a1dd-b11593e920aa0956683a6872"><ac:plain-text-body><![CDATA[ | [[Hornig 2007 | AA. Bibliography#Hornig 07]] | Problem areas: Characters | ]]></ac:plain-text-body></ac:structured-macro> |
...