Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.
Comment: Migration of unmigrated content due to installation of a new plugin

...

The following table summarizes these three approaches:

Solution

Uninitialized Values

Partially Initialized Objects

Exception in constructor

Prevents

Does not prevent

Final field

Prevents

Prevents

Initialized flag

Detects

Detects

Noncompliant Code Example (Finalizer Attack)

...

Code Block
bgColor#ccccff
class BankOperations {
  private volatile boolean initialized = false;

  public BankOperations() {
    if (!performSSNVerification()) {
      throw new SecurityException("Invalid SSN!");return;                // object construction failed
    }

    this.initialized = true; // Object construction successful
  }

  private boolean performSSNVerification() {
    return false;
  }

  public void greet() {
    if (!this.initialized) {
      throw new SecurityException("Invalid SSN!");
    }

    System.out.println(
        "Welcome user! You may now use all the features.");
  }
}

...

If an object is only partially initialized, its internal fields likely contain safe default values such as null. Even in an untrusted environment, such an object is unlikely to be useful to an attacker. If the developer deems the partially initialized object state secure, then the developer doesn't have to pollute the class with the flag. The flag is necessary only when such a state isn't secure or when accessible methods in the class perform sensitive operations without referencing any internal fieldwhen accessible methods in the class perform sensitive operations without referencing any internal field.

The initialized flag is volatile to ensure that the setting of the flag to true happens-before any reads of the variable. The current code does not allow for multiple threads to read the field before the constructor terminates, but this object could always be subclassed and run in an environment where multiple threads can access the variable.

Noncompliant Code Example (Static Variable)

...

Allowing access to a partially initialized object can provide an attacker with an opportunity to resurrect the object before or during its finalization; as a result, the attacker can bypass security checks.

Rule

Severity

Likelihood

Remediation Cost

Priority

Level

OBJ11-J

High

Probable

Medium

P12

L1

Automated Detection

Automated detection for this rule is infeasible in the general case. Some instances of nonfinal classes whose constructors can throw exceptions could be straightforward to diagnose.

ToolVersionCheckerDescription
Parasoft Jtest
9.5EXCEPT.ENFCImplemented
Include Page
Parasoft_V
Parasoft_V
CERT.OBJ11.EPNFCDo not throw exceptions from constructors of "public" non-"final" classes

Related Vulnerabilities

CVE-2008-53395353 describes a collection of vulnerabilities in Java. In one of the vulnerabilities, an applet causes an object to be deserialized using ObjectInputStream.readObject(), but the input is controlled by an attacker. The object actually read is a serializable subclass of ClassLoader, and it has a readObject() method that stashes the object instance into a static variable; consequently, the object survives the serialization. As a result, the applet manages to construct a ClassLoader object by passing the restrictions against this in an applet, and the ClassLoader allows it to construct classes that are not subject to the security restrictions of an applet. This vulnerability is described in depth in SER08-J. Minimize privileges before deserializing from a privileged context.

Related Guidelines

Secure Coding Guidelines for Java SE, Version 5.0

Guideline 4-5 / EXTEND-5: Limit the extensibility of classes and methods
Guideline 7-3 / OBJECT-3: Defend against partially initialized instances of non-final classes

Bibliography

[API 2006]

finalize()

[Darwin 2004]

Section 9.5, "The Finalize Method"

[Flanagan 2005]

Section 3.3, "Destroying and Finalizing Objects"

[JLS 2015]

§8.3.1, Field Modifiers 
§12.6, Finalization of Class Instances

§17.5, "final Field Semantics"

[Kabutz 2001]

Issue 032, "Exceptional Constructors—Resurrecting the Dead"

[Lai 2008]

"Java Insecurity: Accounting for Subtleties That Can Compromise Code"

[Masson 2011]"Secure Your Code against the Finalizer Vulnerability"

...


...

Image Modified Image Modified Image Modified