Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

Avoid excessive stack allocations, particularly in situations where the growth of the stack can be controlled or influenced by an attacker. See INT04-C. Enforce limits on integer values originating from tainted sources for more information on preventing attacker-controlled integers from exhausting memory.

Noncompliant Code Example

The C Standard includes support for variable length arrays (VLAs). If the array length is derived from an untrusted data source, an attacker can cause the process to perform an excessive allocation on the stack.

This noncompliant code example temporarily stores data read from a source file into a buffer. The buffer is allocated on the stack as a VLA of size bufsize. If bufsize can be controlled by a malicious user, this code can be exploited to cause a denial-of-service attack:

Code Block
bgColor#FFcccc
langc

The stack is frequently used for convenient temporary storage, because allocated memory is automatically freed when the function returns. Also, the operating system automatically grows the stack if the process accesses memory beyond the current allocation. This can fail due to lack of memory or collision with other allocated areas of the address space. However, most methods of stack allocation have no way to report failure. Instead of returning an error code, a failure to grow the stack results in the process being killed. If user input is able to influence the amount of stack memory allocated then an attacker could use this in a denial-of-service attack.

Dynamic Arrays

C99 includes support for variable length arrays. If the value used for the length of the array is influenced by user input, an attacker could cause the program to use a large number of stack pages, possibly resulting in the process being killed due to lack of memory, or simply cause the stack pointer to point to a different region of memory. The latter could result in a page fault and the process being killed or a write to an arbitrary memory location. An easy solution is to use the malloc family of functions to allocate and free memory, and handle any errors that malloc returns.

Non-Compliant Code Example

This example could be taken from a file-copying program. It allocates a buffer of user-defined size on the stack to temporarily store data read from the source file. If the size of the buffer is not constrained, a malicious user could specify a buffer of several gigabytes and cause a crash. A more malicious user could specify a buffer long enough to place the stack pointer into the heap and overwrite memory there with what fputs and fgets store on the stack.

Code Block

int copy_file(FILE *src, FILE *dst, size_t bufsize)
 {
  char buf[bufsize];

  while (fgets(buf, bufsize, src)) {
    if (fputs(buf, dst); == EOF) {
      /* Handle error */
    }
  }

  return 0;
}

The BSD extension function alloca() behaves in a similar fashion to VLAs; its use is not recommended [Loosemore 2007].

Compliant Solution

This compliant solution replaces the dynamic array the VLA with a call to malloc(). If malloc, and performs appropriate error checking on the malloc return value.() fails, the return value can be checked to prevent the program from terminating abnormally.

Code Block
bgColor#ccccff
langc
Code Block

int copy_file(FILE *src, FILE *dst, size_t bufsize) {
  if (bufsize == 0) {
    /* Handle error */
  }
  char *buf = (char *)malloc(bufsize);
  if (!buf) {
    /* Handle error */
 return -1;}

  while (fgets(buf, bufsize, src)) {
    if (fputs(buf, dst) == EOF) {
      /* Handle error */
    }
  }
  /* ... */
  free(buf);

  return 0;
}

Noncompliant Code Example

Recursion

...

Excessive recursion also requires the operating system to grow the stack, and can thus lead to the process being killed due to lack of memory. Depending on the algorithm, this can be much more difficult to fix than the use of dynamic arrays. However, the use of recursion in most C programs is limited in part because non-recursive solutions are often faster.

Non-Compliant Code Example

can also lead to large stack allocations. Recursive functions must ensure that they do not exhaust the stack as a result of excessive recursions.

This noncompliant This is a naive implementation of the Fibonacci function using exponential recursion (as well as exponential time). When tested on a Linux system, fib1(100) crashes with a segmentation fault.uses recursion:

Code Block
bgColor#FFcccc
langc
Code Block

unsigned long fib1(unsigned int n)
 {
  if (n == 0) {
    return 0;
  }
  else if (n == 1 || n == 2) {
    return 1;
  }
  else {
    return fib1(n-1) + fib1(n-2);
  }
}

Compliant Solution

This is a much more efficient solution, using constant space and linear time. Tested on a Linux system, fib2(100) is calculated almost instantly and with almost no chance of crashing due to a failed stack allocation.

The amount of stack space needed grows linearly with respect to the parameter n. Large values of n have been shown to cause abnormal program termination.

Compliant Solution

This implementation of the Fibonacci functions eliminates the use of recursion:

Code Block
bgColor#ccccff
langc
Code Block

unsigned long fib2(unsigned int n)
 {
  if (n == 0) {
    return 0;
  }
  else if (n == 1 || n == 2) {
    return 1;
  }

  unsigned long prev = 1;
  unsigned long cur = 1;

  unsigned int i;

  for (i = 3; i <= n; i++)
  {
    unsigned long tmp = cur;
    cur = cur + prev;
    prev = tmp;
  }

  return cur;
}

Risk Assessment

Stack overflow caused by excessive stack allocations or recursion could lead to abnormal termination and denial-of-service attacks.

Because there is no recursion, the amount of stack space needed does not depend on the parameter n, greatly reducing the risk of stack overflow.

Risk Assessment

Program stacks are frequently used for convenient temporary storage because allocated memory is automatically freed when the function returns. Generally, the operating system grows the stack as needed. However, growing the stack can fail because of a lack of memory or a collision with other allocated areas of the address space (depending on the architecture). When the stack is exhausted, the operating system can terminate the program abnormally. This behavior can be exploited, and an attacker can cause a denial-of-service attack if he or she can control or influence the amount of stack memory allocated.

Recommendation

Rule

Severity

Likelihood

Remediation Cost

Priority

Level

MEM05-C

Medium

Likely

Medium

P12

L1

Automated Detection

Tool

Version

Checker

Description

CodeSonar
Include Page
CodeSonar_V
CodeSonar_V

IO.TAINT.SIZE

MISC.MEM.SIZE.BAD

Tainted Allocation Size

Unreasonable Size Argument

Coverity

Include Page
Coverity_V
Coverity_V

STACK_USE

Can help detect single stack allocations that are dangerously large, although it will not detect excessive stack use resulting from recursion

Helix QAC

Include Page
Helix QAC_V
Helix QAC_V

C1051, C1520, C3670
Klocwork
Include Page
Klocwork_V
Klocwork_V
MISRA.FUNC.RECUR
LDRA tool suite
Include Page
LDRA_V
LDRA_V

MEM05-A

1 (low)

1 (unlikely)

2 (medium)

P2

L3

References

44 SEnhanced Enforcement
Parasoft C/C++test

Include Page
Parasoft_V
Parasoft_V

CERT_C-MEM05-a
CERT_C-MEM05-b

Do not use recursion
Ensure the size of the variable length array is in valid range

PC-lint Plus

Include Page
PC-lint Plus_V
PC-lint Plus_V

9035, 9070

Partially supported: reports use of variable length arrays and recursion

Polyspace Bug Finder

Include Page
Polyspace Bug Finder_V
Polyspace Bug Finder_V

CERT C: Rec. MEM05-C


Checks for:

  • Direct or indirect function call to itself
  • Variable length array with nonpositive size
  • Tainted size of variable length array

Rec. partially covered.

PVS-Studio

Include Page
PVS-Studio_V
PVS-Studio_V

V505

Related Vulnerabilities

Stack overflow has been implicated in Toyota unintended acceleration cases, where Camry and other Toyota vehicles accelerated unexpectedly.  Michael Barr testified at the trial that a stack overflow could corrupt the critical variables of the operating system, because they were located in memory adjacent to the top of the stack [Samek 2014].

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

Related Guidelines

Bibliography

[Loosemore 2007]Section 3.2.5, "Automatic Storage with Variable Size"
[Samek 2014]

Are We Shooting Ourselves in the Foot with Stack Overflow?

Monday, February 17th, 2014 by Miro Samek

[Seacord 2013]Chapter 4, "Dynamic Memory Management"


...

Image Added Image Added Image Added Wiki Markup\[[Sprundel 06|http://ilja.netric.org/files/Unusual%20bugs.pdf]\] "Stack Overflow"