Threads preserve class invariants when they are allowed to exit normally. Programmers often attempt to terminate threads abruptly when they believe the task is complete, the request has been canceled, or the program or Java Virtual Machine (JVM) must shut down expeditiously.
Certain thread APIs were introduced to facilitate thread suspension, resumption, and termination but were later deprecated because of inherent design weaknesses. For example, the Thread.stop()
method causes the thread to immediately throw a ThreadDeath
exception, which usually stops the thread. More information about deprecated methods is available in rule MET02-J. Do not use deprecated or obsolete classes or methods.
Invoking Thread.stop()
results in the release of all locks a thread has acquired, potentially exposing the objects protected by those locks when those objects are in an inconsistent state. The thread might catch the ThreadDeath
exception and use a finally
block in an attempt to repair the inconsistent object or objects. However, this doing so requires careful inspection of all synchronized methods and blocks because a ThreadDeath
exception can be thrown at any point during the thread's execution. Furthermore, code must be protected from ThreadDeath
exceptions that might occur while executing catch
or finally
blocks [Sun 1999]. Consequently, programs must not invoke Thread.stop()
.
Removing the java.lang.RuntimePermission stopThread
permission from the security policy file prevents threads from being stopped using the Thread.stop()
method. Although this approach guarantees that the program cannot use the Thread.stop()
method, it is nevertheless strongly discouraged. Existing trusted, custom-developed code that uses the Thread.stop()
method presumably depends on the ability of the system to perform this action. Furthermore, the system might fail to correctly handle the resulting security exception. Additionally, third-party libraries may also depend on use of the Thread.stop()
method.
Refer to rule ERR09-J. Do not allow untrusted code to terminate the JVM for information on preventing data corruption when the JVM is abruptly shut down.
...
Because the Vector
class is thread-safe, operations performed by multiple threads on its shared instance are expected to leave it in a consistent state. For instance, the Vector.size()
method always returns the correct number of elements in the vector, even after concurrent changes to the vector, because the vector instance uses its own intrinsic lock to prevent other threads from accessing it while its state is temporarily inconsistent.
However, the Thread.stop()
method causes the thread to stop what it is doing and throw a ThreadDeath
exception. All acquired locks are subsequently released [API 20062014]. If the thread were in the process of adding a new integer to the vector when it was stopped, the vector would become accessible while it is in an inconsistent state. For example, this could result in Vector.size()
returning an incorrect element count because the element count is incremented after adding the element.
...
Forcing a thread to stop can result in inconsistent object state. Critical resources could also leak if cleanup operations are not carried out as required.
Rule | Severity | Likelihood | Remediation Cost | Priority | Level |
---|---|---|---|---|---|
THI05-J |
Low |
Probable |
Medium | P4 | L3 |
Automated Detection
Tool | Version | Checker | Description | ||||||
---|---|---|---|---|---|---|---|---|---|
Parasoft Jtest |
| CERT.THI05.THRD | Avoid calling unsafe deprecated methods of 'Thread' and 'Runtime' |
Related Guidelines
Android Implementation Details
On Android, Thread.stop()
was deprecated in API level 1.
Bibliography
[API 2006] |
stop
, interface ExecutorService
Method | |
Section 24.3, "Stopping a Thread" | |
Chapter 7, "Cancellation and Shutdown" | |
Section 2.4, "Two Approaches to Stopping a Thread" |
[Sun 1999]
Concurrency Utilities, More information: Java Thread Primitive Deprecation | |
[JPL 2006] | Section 14.12.1, "Don't Stop |
" |
[ |
2.4, Two Approaches to Stopping a Thread
Chapter 7, Cancellation and Shutdown
...