Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.
Comment: Updated references from C11->C23

...

The only integer type conversions that are guaranteed to be safe for all data values and all possible conforming implementations are conversions of an integral value to a wider type of the same signedness.

The C Standard, subclause 6.3.1.3 [ISO/IEC 9899:20112024], says

When a value with integer type is converted to another integer type other than _Bool, if the value can be represented by the new type, it is unchanged.

Otherwise, if the new type is unsigned, the value is converted by repeatedly adding or subtracting one more than the maximum value that can be represented in the new type until the value is in the range of the new type.

Otherwise, the new type is signed and the value cannot be represented in it; either the result is implementation-defined or an implementation-defined signal is raised.

...

Type range errors, including loss of data (truncation) and loss of sign (sign errors), can occur when converting from a value of a signed type to a value of an unsigned type. This noncompliant code example results in a loss of sign:a negative number being misinterpreted as a large positive number.

Code Block
bgColor#FFcccc
langc
#include <limits.h>

void func(void) {
  signed int si = INT_MIN;) {
  /* Cast eliminates warning */
  unsigned int ui = (unsigned int)si;

  /* ... */
}

/* ... */

func(INT_MIN);

Compliant Solution (Signed to Unsigned)

...

Code Block
bgColor#ccccff
langc
#include <limits.h>

void func(void) {
  signed int si = INT_MIN;) {
  unsigned int ui;
  if (si < 0) {
    /* Handle error */
  } else {
    ui = (unsigned int)si;  /* Cast eliminates warning */
  }
  /* ... */
}
/* ... */

func(INT_MIN + 1);

Subclause 6.2.5, paragraph 911, of the C Standard [ISO/IEC 9899:20112024] provides the necessary guarantees to ensure this solution works on a conforming implementation:

...

This solution is in accordance with INT18-C. Evaluate integer expressions in a larger size before comparing or assigning to that size. Note that (time_+t)-1 also complies with INT31-C-EX3.

Noncompliant Code Example (memset())

For historical reasons, certain C Standard functions accept an argument of type int and convert it to either unsigned char or plain char. This conversion can result in unexpected behavior if the value cannot be represented in the smaller type. This noncompliant solution unexpectedly clears the arrayThe second argument to memset() is an example; it indicates what byte to store in the range of memory indicated by the first and third arguments.  If the second argument is outside the range of a signed char or plain char, then its higher order bits will typically be truncated. Consequently, this noncompliant solution unexpectedly sets all elements in the array to 0, rather than 4096:

Code Block
bgColor#FFcccc
langc
#include <string.h>
#include <stddef.h>
 
int *init_memory(int *array, size_t n) {
  return memset(array, 4096, n); 
} 

...

Conversions to signed character types are more problematic.

The C Standard, subclause 6.3.1.3, paragraph 3 [ISO/IEC 9899:20112024], says, regarding conversions

...

Furthermore, subclause 6.2.6.2, paragraph 2, says, regarding integer modifications

If the sign Each bit that is one, the a value shall be modified in one of the following ways:
— the corresponding value with sign bit 0 is negated (sign and magnitude)
— the sign bit has the value −(2M ) (two’s complement);
— the sign bit has the value −(2M − 1) (ones’ complement).
Which of these applies is implementation-defined, as is whether the value with sign bit 1 and all value bits zero (for the first two), or with sign bit and all value bits 1 (for ones’ complement), is a trap representation or a normal value. [See note.]

          NOTE: Two's complement is shorthand for "radix complement in radix 2." Ones' complement is shorthand for "diminished radix complement in radix 2."

Consequently, the standard allows for this code to trap:

bit shall have the same value as the same bit in the object representation of the corresponding unsigned type. If the sign bit is zero, it shall not affect the resulting value. If the sign bit is one, it has value −(2N−1). There may or may not be any padding bits signed char shall not have any padding bits. 


Consequently, the standard allows for this code to trap:

Code Block
Code Block
int i = 128; /* 1000 0000 in binary */
assert(SCHAR_MAX == 127);
signed char c = i; /* can trap */

...

Implementations with such trap representations are thought to have existed in the past. Your author was unable to locate any documents describing such processors.

Risk Assessment

Integer truncation errors can lead to buffer overflows and the execution of arbitrary code by an attacker.

Rule

Severity

Likelihood

Remediation Cost

Priority

Level

INT31-C

High

Probable

High

P6

L2

Automated Detection

...

Tool

...

Version

...

Checker

...

Description

...

LANG.CAST.PC.AV
LANG.CAST.PC.CONST2PTR
LANG.CAST.PC.INT

LANG.CAST.COERCE
LANG.CAST.VALUE

ALLOC.SIZE.TRUNC
MISC.MEM.SIZE.TRUNC

LANG.MEM.TBA

...

Cast: arithmetic type/void pointer
Conversion: integer constant to pointer
Conversion: pointer/integer

Coercion alters value
Cast alters value

Truncation of allocation size
Truncation of size

Tainted buffer access

...

Can detect violations of this rule. However, false warnings may be raised if limits.h is included

...

Coverity*

...

NEGATIVE_RETURNS

REVERSE_NEGATIVE

MISRA_CAST

...

Can find array accesses, loop bounds, and other expressions that may contain dangerous implied integer conversions that would result in unexpected behavior

Can find instances where a negativity check occurs after the negative value has been used for something else

Can find instances where an integer expression is implicitly converted to a narrower integer type, where the signedness of an integer value is implicitly converted, or where the type of a complex expression is implicitly converted

INT31-C-EX3: The C Standard, subclause 7.29.2.5, paragraph 3 [ISO/IEC 9899:2024] says:

The time function returns the implementation’s best approximation to the current calendar time. The value (time_t)(-1) is returned if the calendar time is not available.

If time_t is an unsigned type, then the expression ((time_t) (-1)) is guaranteed to yield a large positive value.

Therefore, conversion of a negative compile-time constant to an unsigned value with the same or larger width is permitted by this rule. This exception does not apply to conversion of unsigned to signed values, nor does it apply if the resulting value would undergo truncation.

Risk Assessment

Integer truncation errors can lead to buffer overflows and the execution of arbitrary code by an attacker.

Rule

Severity

Likelihood

Remediation Cost

Priority

Level

INT31-C

High

Probable

High

P6

L2

Automated Detection

Tool

Version

Checker

Description

Astrée
Include Page
Astrée_V
Astrée_V

Supported via MISRA C:2012 Rules 10.1, 10.3, 10.4, 10.6 and 10.7
CodeSonar
Include Page
CodeSonar_V
CodeSonar_V

LANG.CAST.PC.AV
LANG.CAST.PC.CONST2PTR
LANG.CAST.PC.INT

LANG.CAST.COERCE
LANG.CAST.VALUE

ALLOC.SIZE.TRUNC
MISC.MEM.SIZE.TRUNC

LANG.MEM.TBA

Cast: arithmetic type/void pointer
Conversion: integer constant to pointer
Conversion: pointer/integer

Coercion alters value
Cast alters value

Truncation of allocation size
Truncation of size

Tainted buffer access

Compass/ROSE

Can detect violations of this rule. However, false warnings may be raised if limits.h is included

Coverity*

Include Page
Coverity_V
Coverity_V

NEGATIVE_RETURNS

REVERSE_NEGATIVE

MISRA_CAST

Can find array accesses, loop bounds, and other expressions that may contain dangerous implied integer conversions that would result in unexpected behavior

Can find instances where a negativity check occurs after the negative value has been used for something else

Can find instances where an integer expression is implicitly converted to a narrower integer type, where the signedness of an integer value is implicitly converted, or where the type of a complex expression is implicitly converted

 Cppcheck
 
Include Page
Cppcheck_V
Cppcheck_V
memsetValueOutOfRange

Partially implemented

The second argument to memset() cannot be represented as unsigned char

Cppcheck Premium

Include Page
Cppcheck Premium_V
Cppcheck Premium_V

memsetValueOutOfRange

premium-cert-int31-c

Partially implemented
The second argument to memset() cannot be represented as unsigned char
Helix QAC

Include Page
Helix QAC_V
Helix QAC_V

C2850, C2855, C2890, C2895, C2900, C2905,

C++2850, C++2855, C++2890, C++2895, C++2900, C++2905,  C++3000, C++3010


DF2851, DF2852, DF2853,  DF2856, DF2857, DF2858, DF2891, DF2892, DF2893, DF2896, DF2897, DF2898, DF2901, DF2902, DF2903, DF2906, DF2907, DF2908


Klocwork
Include Page
Klocwork_V
Klocwork_V

PORTING.CAST.SIZE


LDRA tool suite
Include Page
LDRA_V
LDRA_V

93 S, 433 S, 434 S

Partially implemented
Parasoft C/C++test

Include Page
Parasoft_V
Parasoft_V

CERT_C-INT31-a
CERT_C-INT31-b
CERT_C-INT31-c
CERT_C-INT31-d
CERT_C-INT31-e
CERT_C-INT31-f
CERT_C-INT31-g
CERT_C-INT31-h
CERT_C-INT31-i
CERT_C-INT31-j
CERT_C-INT31-k
CERT_C-INT31-l
CERT_C-INT31-m
CERT_C-INT31-n
CERT_C-INT31-o
CERT_C-INT31-p

An expression of essentially Boolean type should always be used where an operand is interpreted as a Boolean value
An operand of essentially Boolean type should not be used where an operand is interpreted as a numeric value
An operand of essentially character type should not be used where an operand is interpreted as a numeric value
An operand of essentially enum type should not be used in an arithmetic operation
Shift and bitwise operations should not be performed on operands of essentially signed or enum type
An operand of essentially signed or enum type should not be used as the right hand operand to the bitwise shifting operator
An operand of essentially unsigned type should not be used as the operand to the unary minus operator
The value of an expression shall not be assigned to an object with a narrower essential type
The value of an expression shall not be assigned to an object of a different essential type category
Both operands of an operator in which the usual arithmetic conversions are performed shall have the same essential type category
The second and third operands of the ternary operator shall have the same essential type category
The value of a composite expression shall not be assigned to an object with wider essential type
If a composite expression is used as one operand of an operator in which the usual arithmetic conversions are performed then the other operand shall not have wider essential type
If a composite expression is used as one (second or third) operand of a conditional operator then the other operand shall not have wider essential type
Avoid data loss when converting between integer types
Avoid value change when converting between integer types

Polyspace Bug Finder

Include Page
Polyspace Bug Finder_V
Polyspace Bug Finder_V

CERT C: Rule INT31-C


Checks for:

  • Integer conversion overflow
  • Call to memset with unintended value
  • Sign change integer conversion overflow
  • Tainted sign change conversion
  • Unsigned integer conversion overflow

Rule partially covered.

PVS-Studio

Include Page
PVS-Studio_V
PVS-Studio_V

V562V569, V642, V676, V716, V721V724, V732V739, V784V793V1019,  V1029, V1046

RuleChecker

Include Page
RuleChecker_V
RuleChecker_V


Supported via MISRA C:2012 Rules 10.1, 10.3, 10.4, 10.6 and 10.7
TrustInSoft Analyzer

Include Page
TrustInSoft Analyzer_V
TrustInSoft Analyzer_V

signed_downcastExhaustively verified.

* Coverity Prevent cannot discover all violations of this rule, so further verification is necessary.

Related Vulnerabilities

CVE-2009-1376 results from a violation of this rule. In version 2.5.5 of Pidgin, a size_t offset is set to the value of a 64-bit unsigned integer, which can lead to truncation [xorl 2009] on platforms where a size_t is implemented as a 32-bit unsigned integer. An attacker can execute arbitrary code by carefully choosing this value and causing a buffer overflow.

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

Related Guidelines

Key here (explains table format and definitions)

Taxonomy

Taxonomy item

Relationship

CERT CDCL03-C. Use a static assertion to test the value of a constant expressionPrior to 2018-01-12: CERT: Unspecified Relationship
CERT CINT18-C. Evaluate integer expressions in a larger size before comparing or assigning to that sizePrior to 2018-01-12: CERT: Unspecified Relationship
CERT CFIO34-C. Distinguish between characters read from a file and EOF or WEOFPrior to 2018-01-12: CERT: Unspecified Relationship
CERT Oracle Secure Coding Standard for JavaNUM12-J. Ensure conversions of numeric types to narrower types do not result in lost or misinterpreted dataPrior to 2018-01-12: CERT: Unspecified Relationship
ISO/IEC TR 24772:2013Numeric Conversion Errors [FLC]Prior to 2018-01-12: CERT: Unspecified Relationship
MISRA C:2012Rule 10.1 (required)Prior to 2018-01-12: CERT: Unspecified Relationship
MISRA C:2012Rule 10.3 (required)Prior to 2018-01-12: CERT: Unspecified Relationship
MISRA C:2012Rule 10.4 (required)Prior to 2018-01-12: CERT: Unspecified Relationship
MISRA C:2012Rule 10.6 (required)Prior to 2018-01-12: CERT: Unspecified Relationship
MISRA C:2012Rule 10.7 (required)Prior to 2018-01-12: CERT: Unspecified Relationship
CWE 2.11CWE-192, Integer Coercion Error2017-07-17: CERT: Exact
CWE 2.11CWE-197, Numeric Truncation Error2017-06-14: CERT: Rule subset of CWE
CWE 2.11CWE-681, Incorrect Conversion between Numeric Types2017-07-17: CERT: Rule subset of CWE
CWE 2.11CWE-7042017-07-17: CERT: Rule subset of CWE

CERT-CWE Mapping Notes

Key here for mapping notes

CWE-195 and INT31-C

CWE-195 = Subset( CWE-192)

INT31-C = Union( CWE-195, list) where list =

  • Unsigned-to-signed conversion error
  • Truncation that does not change sign

CWE-197 and INT31-C

See CWE-197 and FLP34-C

CWE-194 and INT31-C

CWE-194 = Subset( CWE-192)

INT31-C = Union( CWE-194, list) where list =

  • Integer conversion that truncates significant data, but without loss of sign

CWE-20 and INT31-C

See CWE-20 and ERR34-C

CWE-704 and INT31-C

CWE-704 = Union( INT31-C, list) where list =

  • Improper type casts where either the source or target type is not an integral type

CWE-681 and INT31-C

CWE-681 = Union( INT31-C, FLP34-C)

Intersection( INT31-C, FLP34-C) = Ø

...

PRECISION.LOSS
PRECISION.LOSS.CALL

...

93 S, 433 S, 434 S

...

Integer conversion overflow, Sign change integer conversion overflow, Tainted sign change conversion, Unsigned integer conversion overflow

 

...

Overflow when converting between integer types

Overflow when converting between signed and unsigned integers

 Value from an unsecure source changes sign

 Overflow when converting between unsigned integer types

...

2850, 2851, 2852, 2853,
2900, 2901, 2902, 2903,
2905, 2906, 2907, 2908,
2855, 2856, 2857, 2858,
2890, 2891, 2892, 2893,
2895, 2896, 2897, 2898

...

* Coverity Prevent cannot discover all violations of this rule, so further verification is necessary.

Related Vulnerabilities

CVE-2009-1376 results from a violation of this rule. In version 2.5.5 of Pidgin, a size_t offset is set to the value of a 64-bit unsigned integer, which can lead to truncation [xorl 2009] on platforms where a size_t is implemented as a 32-bit unsigned integer. An attacker can execute arbitrary code by carefully choosing this value and causing a buffer overflow.

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

Related Guidelines

...

DCL03-C. Use a static assertion to test the value of a constant expression
INT18-C. Evaluate integer expressions in a larger size before comparing or assigning to that size

...

Rule 10.1 (required)
Rule 10.3 (required)
Rule 10.4 (required)
Rule 10.6 (required)
Rule 10.7 (required)

...

Bibliography

[Dowd 2006]Chapter 6, "C Language Issues" ("Type Conversions," pp. 223–270)
[ISO/IEC 9899:
2011
2024]

6.3.1.3, "Signed and Unsigned Integers"

6.2.5, "Types"

7.29.2.5, "The time function"

[Jones 2008]Section 6.2.6.2, "Integer Types"
[Seacord 2013b]Chapter 5, "Integer Security"
[Viega 2005]Section 5.2.9, "Truncation Error"
Section 5.2.10, "Sign Extension Error"
Section 5.2.11, "Signed to Unsigned Conversion Error"
Section 5.2.12, "Unsigned to Signed Conversion Error"
[Warren 2002]Chapter 2, "Basics"
[xorl 2009]"CVE-2009-1376: Pidgin MSN SLP Integer Truncation"

...


...

Image Modified Image Modified Image Modified