Signed integer overflow is undefined behavior (see undefined behavior 36 in Annex J of the C Standard). Consequently, implementations have considerable latitude in how they deal with signed integer overflow. (see See MSC15-C. Do not depend on undefined behavior.) . An implementation that defines signed integer types as being modulo, for example, need not detect integer overflow. Implementations may also trap on signed arithmetic overflows, or simply assume that overflows will never happen and generate object code accordingly. It is also possible for the same conforming implementation to emit code that exhibits different behavior in different contexts. For example, an implementation may determine that a signed integer loop control variable declared in a local scope cannot overflow and may emit efficient code on the basis of that determination, while the same implementation may determine that a global variable used in as a similar context will wrap.
For these reasons, it is important to ensure that operations on signed integers do no not result in overflow. Of particular importance are operations on signed integer values that originate from a tainted source and are used as:
- integer Integer operands of any pointer arithmetic, including array indexing;
- the The assignment expression for the declaration of a variable length array;
- the The postfix expression preceding square brackets
[]
or the expression in square brackets[]
of a subscripted designation of an element of an array object; and - function Function arguments of type
size_t
orrsize_t
(for example, an argument to a memory allocation function).
Most integer operations can result in Integer operations will overflow if the resulting value cannot be represented by the underlying representation of the integer. The following table indicates which operators operations can result in overflow:.
Operator | Overflow | Operator | Overflow | Operator | Overflow | Operator | Overflow |
---|---|---|---|---|---|---|---|
| Yes |
| Yes |
| Yes |
| No |
| Yes |
| Yes |
| No |
| No |
| Yes |
| Yes |
| No |
| No |
| Yes |
| Yes |
| No |
| No |
| Yes |
| Yes |
| No |
| No |
| Yes |
| No |
| No |
| No |
| Yes |
| No |
| No |
| No |
| No |
| No |
| No |
| No |
| Yes |
| No |
| Yes |
| No |
The following sections examine specific operations that are susceptible to integer overflow. When operating on small integer types (smaller with less precision than int
), integer promotions are applied. The usual arithmetic conversions may also be applied to (implicitly) convert operands to equivalent types before arithmetic operations are performed. Programmers should understand integer conversion rules before trying to implement secure arithmetic operations. (See INT02-C. Understand integer conversion rules.)
Implementation Details
GNU GCC invoked with the -fwrapv
command-line option defines the same modulo arithmetic for both unsigned and signed integers.
...
GNU GCC invoked without either the -fwrapv
or the -ftrapv
option may simply assume that signed integers never overflow and may generate object code accordingly. Anchor
Addition
Atomic Integers
The C Standard defines the behavior of arithmetic on atomic signed integer types to use two's complement representation with silent wraparound on overflow; there are no undefined results. Although defined, these results may be unexpected and therefore carry similar risks to unsigned integer wrapping. (See INT30-C. Ensure that unsigned integer operations do not wrap.) Consequently, signed integer overflow of atomic integer types should also be prevented or detected.
Addition
Addition is between two operands of arithmetic type or between a pointer to an object type and an integer type. This rule applies only to addition between two operands of arithmetic type. (See ARR37-C. Do not add or subtract an Addition is between two operands of arithmetic type or between a pointer to an object type and an integer type. This rule only applies to addition between two operands of arithmetic type. See ARR37-C. Do not add or subtract an integer to a pointer to a non-array object and ARR30-C. Do not form or use out-of-bounds pointers or array subscripts.)
Incrementing is equivalent to adding 1.
Noncompliant Code Example
This noncompliant code example may can result in a signed integer overflow during the addition of the signed operands si_a
and si_b
. :
Code Block | ||||
---|---|---|---|---|
| ||||
void func(signed int si_a, signed int si_b) { signed int sum = si_a + si_b; /* ... */ } |
Compliant Solution
This compliant solution ensures that the addition operation cannot overflow, regardless of representation:
Code Block | ||||
---|---|---|---|---|
| ||||
#include <limits.h> void f(signed int si_a, signed int si_b) { signed int sum; if (((si_b > 0) && (si_a > (INT_MAX - si_b))) || ((si_b < 0) && (si_a < (INT_MIN - si_b)))) { /* Handle error */ } else { sum = si_a + si_b; } /* ... */ } |
...
Compliant Solution (GNU)
This compliant solution uses the GNU extension __builtin_sadd_overflow
, available with GCC, Clang, and ICC:
Code Block | ||||
---|---|---|---|---|
| ||||
void f(signed int si_a, signed int si_b) {
signed int sum;
if (__builtin_sadd_overflow(si_a, si_b, &sum)) {
/* Handle error */
} |
...
Subtraction
Subtraction is between two operands of arithmetic type, two pointers to qualified or unqualified versions of compatible object types, or a pointer to an object type and an integer type. This rule only applies to subtraction between two operands of arithmetic type. See ARR36-C. Do not subtract or compare two pointers that do not refer to the same array, ARR37-C. Do not add or subtract an integer to a pointer to a non-array object, and ARR30-C. Do not form or use out of bounds pointers or array subscripts for information about pointer subtraction.
Decrementing is equivalent to subtracting 1.
Noncompliant Code Example
This noncompliant code example can result in a signed integer overflow during the subtraction of the signed operands si_a
and si_b
.
Code Block | ||||
---|---|---|---|---|
| ||||
void func(signed int si_a, signed int si_b) {
signed int diff = si_a - si_b;
/* ... */
} |
Compliant Solution
This compliant solution tests the operands of the subtraction to guarantee there is no possibility of signed overflow, regardless of representation:
Code Block | ||||
---|---|---|---|---|
| ||||
#include <limits.h>
void func(signed int si_a, signed int si_b) {
signed int diff;
if ((si_b > 0 && si_a < INT_MIN + si_b) ||
(si_b < 0 && si_a > INT_MAX + si_b)) {
/* Handle error */
} else {
diff = si_a - si_b;
}
/* ... */
} |
...
Subtraction
Subtraction is between two operands of arithmetic type, two pointers to qualified or unqualified versions of compatible object types, or a pointer to an object type and an integer type. This rule applies only to subtraction between two operands of arithmetic type. (See ARR36-C. Do not subtract or compare two pointers that do not refer to the same array, ARR37-C. Do not add or subtract an integer to a pointer to a non-array object, and ARR30-C. Do not form or use out-of-bounds pointers or array subscripts for information about pointer subtraction.)
Decrementing is equivalent to subtracting 1.
Noncompliant Code Example
This noncompliant code example can result in a signed integer overflow during the subtraction of the signed operands si_a
and si_b
:
Code Block | ||||
---|---|---|---|---|
| ||||
void func(signed int si_a, signed int si_b) {
signed int diff = si_a - si_b;
/* ... */
} |
Compliant Solution
This compliant solution tests the operands of the subtraction to guarantee there is no possibility of signed overflow, regardless of representation:
Code Block | ||||
---|---|---|---|---|
| ||||
#include <limits.h>
void func(signed int si_a, signed int si_b) {
signed int diff;
if ((si_b > 0 && si_a < INT_MIN + si_b) ||
(si_b < 0 && si_a > INT_MAX + si_b)) {
/* Handle error */
} else {
diff = si_a - si_b;
}
/* ... */
} |
Compliant Solution (GNU)
This compliant solution uses the GNU extension __builtin_ssub_overflow
, available with GCC, Clang, and ICC:
Code Block | ||||
---|---|---|---|---|
| ||||
void func(signed |
...
Multiplication
Multiplication is between two operands of arithmetic type.
Noncompliant Code Example
This noncompliant code example can result in a signed integer overflow during the multiplication of the signed operands si_a
and si_b
.
Code Block | ||||
---|---|---|---|---|
| ||||
void func(signed int si_a, signed int si_b) { signed int resultdiff; = si_a * si_b; if (__builtin_ssub_overflow(si_a, si_b, &diff)) { /* Handle error */ } /* ... */ } |
Compliant Solution
Multiplication
Multiplication is between two operands of arithmetic type.
Noncompliant Code Example
This noncompliant code example can result in a signed integer overflow during the multiplication of the signed operands si_a
and si_b
The product of two operands can always be represented using twice the number of bits in the larger of the two operands. This compliant solution eliminates signed overflow on systems where long long
is at least twice the width of int
:
Code Block | ||||
---|---|---|---|---|
| ||||
void func(signed int si_a, signed int si_b) {
signed int result = si_a * si_b;
/* ... */
} |
Compliant Solution
The product of two operands can always be represented using twice the number of bits than exist in the precision of the larger of the two operands. This compliant solution eliminates signed overflow on systems where long long
is at least twice the precision of int
:
Code Block | ||||
---|---|---|---|---|
| ||||
#include <stddef.h> #include <assert.h> #include <limits.h> #include <inttypes.h> extern size_t popcount(uintmax_t); #define PRECISION(umax_value) popcount(umax_value) void func(signed int si_a, signed int si_b) { signed int result; signed long long tmp; assert(PRECISION(ULLONG_MAX) >= 2 * PRECISION(UINT_MAX)); tmp = (signed long long)si_a * (signed long long)si_b; /* * If the product cannot be represented as a 32-bit integer, * handle as an error condition. */ if ((tmp > #include <stddef.h> #include <assert.h> #include <limits.h> #include <inttypes.h> extern size_t popcount(uintmax_t); #define PRECISION(umax_value) popcount(umax_value) void func(signed int si_a, signed int si_b) { signed int result; signed long long tmp; assert(PRECISION(ULLONG_MAX) >= 2 * PRECISION(UINT_MAX)); tmp = (signed long long)si_a * (signed long long)si_b; /* * If the product cannot be represented as a 32-bit integer, * handle as an error condition. */ if ((tmp > INT_MAX) || (tmp < INT_MIN)) { /* Handle error */ } else { result = (int)tmp; } /* ... */ } |
The assertion fails if long long
has less than twice the width precision of int
. The PRECISION()
macro and popcount()
function are explained in provide the correct precision for any integer type. (See INT35-C. Use correct integer precisions. )
Compliant Solution
The following portable compliant solution can be used for on with any conforming implementation, including those that do not have an integer type that is at least twice as big as int
.the precision of int
:
Code Block | ||||
---|---|---|---|---|
| ||||
#include <limits.h> void func(signed int si_a, signed int si_b) { signed int result; if (si_a > 0) { /* si_a is positive */ if (si_b > 0) { /* si_a and si_b are positive */ if (si_a > (INT_MAX / si_b)) { /* Handle error */ } } else { /* si_a positive, si_b nonpositive */ if (si_b < (INT_MIN / si_a)) { /* Handle error */ } } /* si_a positive, si_b nonpositive */ } else { /* si_a is nonpositive */ if (si_b > 0) { /* si_a is nonpositive, si_b is positive */ if (si_a < (INT_MIN / si_b)) { /* Handle error */ } } else { /* si_a and si_b are nonpositive */ if ( (si_a != 0) && (si_b < (INT_MAX / si_a))) { /* Handle error */ } } /* End if si_a and si_b are nonpositive */ } /* End if si_a is nonpositive */ result = si_a * si_b; } |
...
Compliant Solution (GNU)
This compliant solution uses the GNU extension __builtin_smul_overflow
, available with GCC, Clang, and ICC:
Code Block | ||||
---|---|---|---|---|
| ||||
void func(signed int si_a, signed int si_b) {
signed int result;
if (__builtin_smul_overflow(si_a, si_b, &result)) {
/* Handle error */
}
} |
Division
Division is between two operands of arithmetic type. Overflow can occur during two's complement signed integer division when the dividend is equal to the minimum (negative) value for the signed integer type and the divisor is equal to −1
. Division operations are also susceptible to divide-by-zero errors. (See INT33-C. Ensure that division
...
Division
Division is between two operands of arithmetic type. Overflow can occur during two's complement signed integer division when the dividend is equal to the minimum (negative) value for the signed integer type and the divisor is equal to −1. Division operations are also susceptible to divide-by-zero errors. (See INT33-C. Ensure that division and remainder operations do not result in divide-by-zero errors.)
Noncompliant Code Example
This noncompliant code example prevents divide-by-zero errors in compliance with INT33-C. Ensure that division and remainder operations do not result in divide-by-zero errors but does not prevent a signed integer overflow error on twos-complement platforms. .)
Noncompliant Code Example
This noncompliant code example prevents divide-by-zero errors in compliance with INT33-C. Ensure that division and remainder operations do not result in divide-by-zero errors but does not prevent a signed integer overflow error in two's-complement.
Code Block | ||||
---|---|---|---|---|
| ||||
Code Block | ||||
| ||||
void func(signed long s_a, signed long s_b) { signed long result; if (s_b == 0) { /* Handle error */ } else { result = s_a / s_b; } /* ... */ } |
...
On the x86-32 architecture, overflow results in a fault, which can be exploited as a denial-of-service attack.
Compliant Solution
This compliant solution eliminates the possibility of divide-by-zero errors or signed overflow:
Code Block | ||||
---|---|---|---|---|
| ||||
#include <limits.h> void func(signed long s_a, signed long s_b) { signed long result; if ((s_b == 0) || ((s_a == LONG_MIN) && (s_b == -1))) { /* Handle error */ } else { result = s_a / s_b; } /* ... */ } |
...
...
Remainder
The remainder operator provides the remainder when two operands of integer type are divided. Because many platforms implement remainder and division in the same instruction, the remainder operator is also susceptible to arithmetic overflow and division by 0zero. (See INT33-C. Ensure that division and remainder operations do not result in divide-by-zero errors.)
Noncompliant Code Example
Many hardware architectures implement remainder as part of the division operator, which can overflow. Overflow can occur during a remainder operation when the dividend is equal to the minimum (negative) value for the signed integer type and the divisor is equal to −1. This It occurs even though the result of such a remainder operation is mathematically 0. This noncompliant code example prevents divide-by-zero errors in compliance with with INT33-C. Ensure that division and remainder operations do not result in divide-by-zero errors but does not prevent integer overflow.:
Code Block | ||||
---|---|---|---|---|
| ||||
void func(signed long s_a, signed long s_b) { signed long result; if (s_b == 0) { /* Handle error */ } else { result = s_a % s_b; } /* ... */ } |
Implementation Details
On x86-32 platforms, the remainder operator for signed integers is implemented by the idiv
instruction code, along with the divide operator. Because LONG_MIN / -1−1
overflows, this code will throw a floating-point exception on it results in a software exception with LONG_MIN % -1
.
On Microsoft Visual Studio 2013, taking the remainder of LONG_MIN
by −1
results in abnormal termination on x86 and x64. On GCC/Linux, taking the remainder of LONG_MIN
by −1
produces a floating-point exception. However, on GCC 4.2.4 and newer, with optimization enabled, taking the remainder of LONG_MIN
by −1
yields the value 0
.
Compliant Solution
This compliant solution also tests the remainder operands to guarantee there is no possibility of an overflow:
−1
as well.
Compliant Solution
This compliant solution also tests the remainder operands to guarantee there is no possibility of an overflow:
Code Block | ||||
---|---|---|---|---|
| ||||
#include <limits.h>
void func(signed long s_a, signed long s_b) {
signed long result;
if ((s_b == 0 ) || ((s_a == LONG_MIN) && (s_b == -1))) {
/* | ||||
Code Block | ||||
| ||||
#include <limits.h> void func(signed long s_a, signed long s_b) { signed long result; if ((s_b == 0 ) || ((s_a == LONG_MIN) && (s_b == -1))) { /* Handle error */ } else { result = s_a % s_b; } /* ... */ } |
...
Left
...
-Shift Operator
The left-shift operator takes two integer operands of integer type. The result of E1 << E2
is E1
left-shifted E2
bit positions; vacated bits are filled with zeros.
The C Standard, 66.5.7 8, paragraph 4 [ISO/IEC 9899:20112024], states
If
E1
has a signed type and nonnegative value, andE1 × 2E2
is representable in the result type, then that is the resulting value; otherwise, the behavior is undefined.
In almost every case, an attempt to shift by a negative number of bits or by more bits than exist in the operand indicates a bug ( logic error). These issues are covered by INT34-C. Do not shift an expression by a negative number of bits or more bits than or by greater than or equal to the number of bits that exist in the operand.
Noncompliant Code Example
This noncompliant code example can result in an unrepresentable value. performs a left shift, after verifying that the number being shifted is not negative, and the number of bits to shift is valid. The PRECISION()
macro and popcount()
function provide the correct precision for any integer type. (See INT35-C. Use correct integer precisions.) However, because this code does no overflow check, it can result in an unrepresentable value.
Code Block | ||||
---|---|---|---|---|
| ||||
Code Block | ||||
| ||||
#include <limits.h> #include <stddef.h> #include <inttypes.h> extern size_t popcount(uintmax_t); #define PRECISION(umax_value) popcount(umax_value) void func(signed long si_a, signed long si_b) { signed long result; if ((si_a < 0) || (si_b < 0) || (si_b >= PRECISION(ULONG_MAX))) { /* Handle error */ } else { result = si_a << si_b; } /* ... */ } |
Compliant Solution
This compliant solution eliminates the possibility of overflow resulting from a left-shift operation:
Code Block | ||||
---|---|---|---|---|
| ||||
#include <limits.h>
#include <stddef.h>
#include <inttypes.h>
extern size_t popcount(uintmax_t);
#define PRECISION(umax_value) popcount(umax_value)
void func(signed long si_a, signed long si_b) {
signed long result;
if ((si_a < 0) || (si_b < 0) ||
(si_b >= PRECISION(ULONG_MAX)) ||
(si_a > (LONG_MAX >> si_b))) {
/* Handle error */
} else {
result = si_a << si_b;
}
/* ... */
} |
The PRECISION()
macro provides the correct width for an unsigned integer type (see INT35-C. Use correct integer precisions).
...
Unary Negation
The unary negation operator takes an operand of arithmetic type.
...
Unary Negation
The unary negation operator takes an operand of arithmetic type. Overflow can occur during two's complement unary negation when the operand is equal to the minimum (negative) value for the signed integer type.
Noncompliant Code Example
This noncompliant code example can result in a signed integer overflow during the unary negation of the signed operand s_a
:
Code Block | ||||
---|---|---|---|---|
| ||||
void func(signed long s_a) {
signed long result = -s_a;
/* ... */
} |
Compliant Solution
This compliant solution tests the suspect negation operation to guarantee there is no possibility of signed overflow:
Code Block | ||||
---|---|---|---|---|
| ||||
#include <limits.h> void func(signed long s_a) { signed long result; if (s_a == LONG_MIN) { /* Handle error */ } else { result = -s_a; } /* ... */ } |
Atomic Integers
The C Standard defines the behavior of arithmetic on atomic signed integer types to use two's complement representation with silent wraparound on overflow; there are no undefined results. However, although defined, these results may be unexpected and therefore carry similar risks to unsigned integer wrapping (see INT30-C. Ensure that unsigned integer operations do not wrap). Consequently, signed integer overflow of atomic integer types should also be prevented or detected.
This section includes an example for the addition of atomic integer types only. For other operations, tests similar to the precondition tests for two’s complement integers used for non-atomic integer types can be used.
Noncompliant Code Example
This noncompliant code example using atomic integers can result in unexpected signed integer overflow:
Code Block | ||||
---|---|---|---|---|
| ||||
#include <stdatomic.h>
atomic_int i;
void func(int si_a) {
atomic_init(&i, 42);
atomic_fetch_add(&i, si_a);
/* ... */
} |
Compliant Solution
This compliant solution tests the operands to guarantee there is no possibility of signed overflow. It loads the value stored in the atomic integer and tests for possible overflow before performing the addition. However, this code contains a race condition where i
can be modified after the load, but prior to the atomic store. This solution is only compliant if i
is guaranteed to only be access by a single thread. See CON43-C. Do not assume that a group of calls to independently atomic methods is atomic for more information.
Code Block | ||||
---|---|---|---|---|
| ||||
#include <limits.h>
#include <stdatomic.h>
atomic_int i;
void func(int si_a) {
int si_b = atomic_load(&i);
if (((si_b > 0) && (si_a > (INT_MAX - si_b))) ||
((si_b < 0) && (si_a < (INT_MIN - si_b)))) {
/* Handle error */
} else {
atomic_store(&i, si_a + si_b);
}
/* ... */
} |
Risk Assessment
Integer overflow can lead to buffer overflows and the execution of arbitrary code by an attacker.
Rule | Severity | Likelihood | Remediation Cost | Priority | Level |
---|---|---|---|---|---|
INT32-C | High | Likely | High | P9 | L2 |
Automated Detection
...
Tool
...
Version
...
Checker
...
Description
...
...
5.0
...
Can detect violations of this rule with CERT C Rule Pack. Specifically, it checks to ensure that the operand of a unary negation is compared to the type's minimum value immediately before the operation
...
...
43 D
493 S
494 S
...
0278
0296
0297
2800
...
Related Vulnerabilities
Search for vulnerabilities resulting from the violation of this rule on the CERT website.
Related Guidelines
...
INT02-C. Understand integer conversion rules
INT35-C. Use correct integer precisions
INT33-C. Ensure that division and remainder operations do not result in divide-by-zero errors
INT34-C. Do not shift a negative number of bits or more bits than exist in the operand
ARR30-C. Do not form or use out of bounds pointers or array subscripts
ARR36-C. Do not subtract or compare two pointers that do not refer to the same array
ARR37-C. Do not add or subtract an integer to a pointer to a non-array object
MSC15-C. Do not depend on undefined behavior
CON08-C. Do not assume that a group of calls to independently atomic methods is atomic
...
Risk Assessment
Integer overflow can lead to buffer overflows and the execution of arbitrary code by an attacker.
Rule | Severity | Likelihood | Remediation Cost | Priority | Level |
---|---|---|---|---|---|
INT32-C | High | Likely | High | P9 | L2 |
Automated Detection
Tool | Version | Checker | Description | ||||||
---|---|---|---|---|---|---|---|---|---|
Astrée |
| integer-overflow | Fully checked | ||||||
CodeSonar |
| ALLOC.SIZE.ADDOFLOW | Addition overflow of allocation size | ||||||
Coverity |
| TAINTED_SCALAR BAD_SHIFT | Implemented | ||||||
Cppcheck Premium |
| premium-cert-int32-c | Partially implemented | ||||||
Helix QAC |
| C2800, C2860 C++2800, C++2860 DF2801, DF2802, DF2803, DF2861, DF2862, DF2863 | |||||||
Klocwork |
| NUM.OVERFLOW | |||||||
LDRA tool suite |
| 493 S, 494 S | Partially implemented | ||||||
Parasoft C/C++test |
| CERT_C-INT32-a | Avoid signed integer overflows | ||||||
Parasoft Insure++ | Runtime analysis | ||||||||
Polyspace Bug Finder |
| Checks for:
Rule partially covered. | |||||||
PVS-Studio |
| V1026, V1070, V1081, V1083, V1085, V5010 | |||||||
TrustInSoft Analyzer |
| signed_overflow | Exhaustively verified (see one compliant and one non-compliant example). |
Related Vulnerabilities
Search for vulnerabilities resulting from the violation of this rule on the CERT website.
Related Guidelines
Key here (explains table format and definitions)
CERT-CWE Mapping Notes
Key here for mapping notes
CWE-20 and INT32-C
See CWE-20 and ERR34-C
CWE-680 and INT32-C
Intersection( INT32-C, MEM35-C) = Ø
Intersection( CWE-680, INT32-C) =
- Signed integer overflows that lead to buffer overflows
CWE-680 - INT32-C =
- Unsigned integer overflows that lead to buffer overflows
INT32-C – CWE-680 =
- Signed integer overflows that do not lead to buffer overflows
CWE-191 and INT32-C
Union( CWE-190, CWE-191) = Union( INT30-C, INT32-C)
Intersection( INT30-C, INT32-C) == Ø
Intersection(CWE-191, INT32-C) =
- Underflow of signed integer operation
CWE-191 – INT32-C =
- Underflow of unsigned integer operation
INT32-C – CWE-191 =
- Overflow of signed integer operation
CWE-190 and INT32-C
Union( CWE-190, CWE-191) = Union( INT30-C, INT32-C)
Intersection( INT30-C, INT32-C) == Ø
Intersection(CWE-190, INT32-C) =
- Overflow (wraparound) of signed integer operation
CWE-190 – INT32-C =
- Overflow of unsigned integer operation
INT32-C – CWE-190 =
- Underflow of signed integer operation
...
Bibliography
[Dowd 2006] | Chapter 6, "C Language Issues" ("Arithmetic Boundary Conditions," pp. 211–223) |
[ISO/IEC 9899: |
2024] | Subclause 6.5. |
8, " |
Bitwise shift operators" |
[Seacord |
2013b] | Chapter 5, "Integer Security" |
[Viega 2005] | Section 5.2.7, "Integer Overflow" |
[ |
Warren 2002] | Chapter 2, "Basics" |
...