Do not call a function with the wrong number or type of arguments.
The C Standard identifies two distinct situations in which undefined behavior (UB) may arise as a result of invoking a function using a declaration that is incompatible with its definition or by supplying incorrect types or numbers of arguments:
UB | Description |
A pointer is used to call a function whose type is not compatible with the referenced type (6.3.2.3). | |
A function is defined with a type that is not compatible with the type (of the expression) pointed to by the expression that denotes the called function (6.5.2.2). |
An application programming interface (API) specifies how a function is intended to be called. Calling a function with incorrect arguments can result in unexpected or unintended program behavior. Functions that are appropriately declared (see DCL07as in DCL40-C. Include the appropriate type information in function declarators) will typically fail compilation Do not create incompatible declarations of the same function or object) will typically generate a compiler diagnostic message if they are supplied with the wrong number or types of arguments. However, there are cases where in which supplying the incorrect arguments to a function will, at best, generate compiler warnings. These Although such warnings should be resolved (see , they do not prevent program compilation. (See MSC00-AC. Compile cleanly at high warning levels) but do not prevent program compilation.
Non-Compliant Code Example (Function Pointers)
.)
Noncompliant Code Example
The header <tgmath.h>
provides type-generic macros for math functions. Although most functions from the <math.h>
header have a complex counterpart in <complex.h>
, several functions do not. Calling any of the following type-generic functions with complex values is undefined behavior.
Functions That Should Not Be Called with Complex Values
atan2() | erf | fdim | fmin | ilogb | llround | logb | nextafter | rint | tgamma |
cbrt | erfc | floor | fmod | ldexp | log10 | lrint | nexttoward | round | trunc |
ceil | exp2 | fma | frexp | lgamma | log1p | lround | remainder | scalbn | |
copysign | expm1 | fmax | hypot | llrint | log2 | nearbyint | remquo | scalbln |
This noncompliant code example attempts to take the base-2 logarithm of a complex number, resulting in undefined behavior:
Code Block | ||||
---|---|---|---|---|
| ||||
#include <tgmath.h>
void func(void) {
double complex c = 2.0 + 4.0 * I;
double complex result = log2(c);
} |
Compliant Solution (Complex Number)
If the clog2()
function is not available for an implementation as an extension, the programmer can take the base-2 logarithm of a complex number, using log()
instead of log2()
, because log()
can be used on complex arguments, as shown in this compliant solution:
Code Block | ||||
---|---|---|---|---|
| ||||
#include <tgmath.h>
void func(void) {
double complex c = 2.0 + 4.0 * I;
double complex result = log(c)/log(2);
} |
Compliant Solution (Real Number)
The programmer can use this compliant solution if the intent is to take the base-2 logarithm of the real part of the complex number:
Code Block | ||||
---|---|---|---|---|
| ||||
#include <tgmath.h>
void func(void) {
double complex c = 2.0 + 4.0 * I;
double complex result = log2(creal(c));
} |
Noncompliant Code Example
In this noncompliant example, the C standard library function strchr()
is called through the function pointer fp
declared with a prototype with incorrectly typed arguments. According to the C Standard, 6.3.2.3, paragraph 8 [ISO/IEC 9899:2024]
A pointer to a function of one type may be converted to a pointer to a function of another type and back again; the result shall compare equal to the original pointer. If a converted pointer is used to call a function whose type is not compatible with the referenced type, the behavior is undefined.
See undefined behavior 25In this example, the function pointer fp
is used to refer to the function strchr()
. However, fp
is declared without a function prototype. As a result, there is no type checking performed on the call to fp(12,2);
.
Code Block | ||||
---|---|---|---|---|
| ||||
#include <stdio.h> #include <string.h> char *(*fp) (); int main(void) { const char *c; fp = strchr; c = fp(12'e', 2"Hello"); printf("%s\n", c); return 0; } |
Compliant Solution
...
In this compliant solution, the function pointer fp
, which points to the C standard library function strchr()
, is declared with the correct parameters and is invoked with the correct number and type of arguments:Declaring fp
with a function prototype corrects this example.
Code Block | ||||
---|---|---|---|---|
| ||||
#include <stdio.h> #include <string.h> char *(*fp)(const (char const *, int); int main(void) { const char *c; fp = strchr; c = fp("Hello",'He'); printf("%s\n", c); return 0; } |
Non-Compliant Code Example (Variadic Functions)
Wiki Markup |
---|
The POSIX function {{open()}} \[[Open Group 04|AA. C References#Open Group 04]\] is a variadic function with the following prototype: |
Noncompliant Code Example
In this noncompliant example, the function f()
is defined to take an argument of type long
but f()
is called from another file with an argument of type int
:
Code Block | ||||
---|---|---|---|---|
| ||||
/* In another source file */
long f(long x) {
return x < 0 ? -x : x;
}
/* In this source file, no f prototype in scope */
long f();
long g(int x) {
return f(x);
} |
Compliant Solution
In this compliant solution, the prototype for the function f()
is included in the source file in the scope of where it is called, and the function f()
is correctly called with an argument of type long
:
Code Block | ||||
---|---|---|---|---|
| ||||
/* In another source file */
long f(long x) {
return x < 0 ? -x : x;
}
/* f prototype in scope in this source file */
long f(long x);
long g(int x) {
return f((long)x);
}
|
Noncompliant Code Example (POSIX)
The POSIX function open()
[IEEE Std 1003.1:2013] is a variadic function with the following prototype:
Code Block |
---|
int open(const char |
Code Block |
int open(char const *path, int oflag, ... );
|
The open()
function accepts a third argument to determine a newly created file's access mode. If open()
is used to create a new file and the third argument is omitted, the file may be created with unintended access permissions. (see See FIO06-AC. Create files with appropriate access permissions.).
In this non-compliant noncompliant code example from a vulnerability in the useradd()
function of the shadow-utils
package CVE-2006-1174, the third argument to open()
has been is accidentally omitted.:
Code Block | ||||
---|---|---|---|---|
| ||||
fd = open(ms, O_CREAT | O_EXCL | O_WRONLY | O_TRUNC); |
Technically, it is incorrect to pass a third argument to open() when not creating a new file (that is, with the O_CREAT flag not set).
Compliant Solution (
...
POSIX)
To correct In this examplecompliant solution, a third argument is specified in the call to open()
.:
Code Block | ||||
---|---|---|---|---|
| ||||
#include <fcntl.h> void func(const char *ms, mode_t perms) { /* ... */ int fd; fd = open(ms, O_CREAT | O_EXCL | O_WRONLY | O_TRUNC, file_access_permissionsperms); if (fd == -1) { /* Handle Errorerror */ } /* ... */} } |
Risk Assessment
Calling a function with incorrect arguments can result in unexpected or unintended program behavior.
Rule | Severity | Likelihood | Remediation Cost | Priority | Level |
---|---|---|---|---|---|
EXP37-C |
Medium |
Probable |
high
P4
L3
High | P4 | L3 |
Automated Detection
Tool | Version | Checker | Description | ||||||
---|---|---|---|---|---|---|---|---|---|
Astrée |
| incompatible-argument-type parameter-match parameter-match-computed parameter-match-type | Fully checked | ||||||
Axivion Bauhaus Suite |
| CertC-EXP37 | |||||||
CodeSonar |
| LANG.FUNCS.APM | Array parameter mismatch | ||||||
Compass/ROSE | Can detect some violations of this rule. In particular, it ensures that all calls to | ||||||||
Coverity |
| MISRA C 2012 Rule 8.2 MISRA C 2012 Rule 17.3 | Implemented Relies on functions declared with prototypes, allow compiler to check | ||||||
Cppcheck Premium |
| premium-cert-exp37-c | Fully implemented | ||||||
| CC2.EXP37 | Partially implemented | |||||||
EDG | |||||||||
GCC |
| Can detect violation of this rule when the | |||||||
Helix QAC |
| C1331, C1332, C1333, C3002, C3320, C3335 C++0403 | |||||||
Klocwork |
| MISRA.FUNC.UNMATCHED.PARAMS | |||||||
LDRA tool suite |
| 41 D, 21 S, 98 S, 170 S, 496 S, 576 S | Partially implemented | ||||||
Parasoft C/C++test |
| CERT_C-EXP37-a | Conversions shall not be performed between non compatible pointer to a function types | ||||||
Polyspace Bug Finder |
| Checks for:
Rule partially covered. | |||||||
PVS-Studio |
| V540, V541, V549, V575, V632, V639, V666, V671, V742, V743, V764, V1004 | |||||||
SonarQube C/C++ Plugin |
| S930 | Detects incorrect argument count | ||||||
RuleChecker |
| parameter-match parameter-match-type | Partially checked | ||||||
TrustInSoft Analyzer |
| unclassified ("function type matches") | Partially verified (see one compliant and one non-compliant example). |
Related Vulnerabilities
Search for vulnerabilities resulting from the violation of this rule on the CERT website.
References
Wiki Markup |
---|
\[[CVE|AA. C References#CVE]\] [CVE-2006-1174 | http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-1174]
\[[ISO/IEC 9899:1999|AA. C References#ISO/IEC 9899-1999]\] Forward and Section 6.9.1, "Function definitions"
\[[ISO/IEC PDTR 24772|AA. C References#ISO/IEC PDTR 24772]\] "OTR Subprogram Signature Mismatch"
\[[MISRA 04|AA. C References#MISRA 04]\] Rule 16.6
\[[Spinellis 06|AA. C References#Spinellis 06]\] Section 2.6.1, "Incorrect Routine or Arguments" |
Related Guidelines
Key here (explains table format and definitions)
Taxonomy | Taxonomy item | Relationship |
---|---|---|
CERT C Secure Coding Standard | DCL07-C. Include the appropriate type information in function declarators | Prior to 2018-01-12: CERT: Unspecified Relationship |
CERT C Secure Coding Standard | MSC00-C. Compile cleanly at high warning levels | Prior to 2018-01-12: CERT: Unspecified Relationship |
CERT C Secure Coding Standard | FIO06-C. Create files with appropriate access permissions | Prior to 2018-01-12: CERT: Unspecified Relationship |
ISO/IEC TR 24772:2013 | Subprogram Signature Mismatch [OTR] | Prior to 2018-01-12: CERT: Unspecified Relationship |
ISO/IEC TS 17961 | Calling functions with incorrect arguments [argcomp] | Prior to 2018-01-12: CERT: Unspecified Relationship |
MISRA C:2012 | Rule 8.2 (required) | Prior to 2018-01-12: CERT: Unspecified Relationship |
MISRA C:2012 | Rule 17.3 (mandatory) | Prior to 2018-01-12: CERT: Unspecified Relationship |
CWE 2.11 | CWE-628, Function Call with Incorrectly Specified Arguments | 2017-07-05: CERT: Rule subset of CWE |
CERT-CWE Mapping Notes
Key here for mapping notes
CWE-685 and EXP37-C
EXP37-C = Union( CWE-685, CWE-686) Intersection( CWE-685, CWE-686) = Ø
CWE-686 and EXP37-C
Intersection( EXP37-C, FIO47-C) =
- Invalid argument types passed to format I/O function
EXP37-C – FIO47-C =
- Invalid argument types passed to non-format I/O function
FIO47-C – EXP37-C =
- Invalid format string, but correctly matches arguments in number and type
EXP37-C = Union( CWE-685, CWE-686)
Intersection( CWE-685, CWE-686) = Ø
CWE-628 and EXP37-C
CWE-628 = Union( EXP37-C, list) where list =
- Improper ordering of function arguments (that does not violate argument types)
- Wrong argument values or references
Bibliography
[CVE] | CVE-2006-1174 |
[ISO/IEC 9899:2011] | 6.5.2.2, "Function Calls" |
[ISO/IEC 9899:2024] | 6.3.2.3, "Pointers" |
[IEEE Std 1003.1:2013] | open() |
[Spinellis 2006] | Section 2.6.1, "Incorrect Routine or Arguments" |
...
EXP36-C. Do not convert pointers into more strictly aligned pointer types 03. Expressions (EXP) EXP38-C. Do not call offsetof() on bit-field members or invalid types