In Java, data is stored in big-endian format (also called network order). That is, all data is represented sequentially starting from the most significant bit to the least significant. JDK versions prior to JDK 1.4 required definition of custom methods that manage reversing byte order to maintain compatibility with little-endian systems. Correct handling of byte order related order–related issues is critical when exchanging data in a networked environment that includes both big-endian and little-endian machines , or when working with other languages via using Java Native Interface (JNI). Failure to handle byte-ordering issues can cause unexpected program behavior.
...
The read methods (readByte()
, readShort()
, readInt()
, readLong()
, readFloat()
, and readDouble()
) and the corresponding write methods defined by class java.io.DataInputStream
and class java.io.DataOutputStream
operate only on big-endian data. Use of these methods while interoperating with traditional languages, such as C or and C++, is insecure because such languages lack any guarantees about endianness. This noncompliant code example shows such a discrepancy. :
Code Block | ||
---|---|---|
| ||
try { DataInputStream dis = null; try { dis = new DataInputStream( new FileInputStream("data")); // Little-endian data might be read as big-endian int serialNumber = dis.readInt(); } catch (IOException x) { // Handle error } finally { if (dis != null) { try { dis.close(); } } catch (IOException xe) { // handleHandle error } } } } |
Compliant Solution (
...
ByteBuffer
)
...
This compliant solution uses methods provided by class {{ByteBuffer
}} (see \[[API 2006|AA. Bibliography#API 06]\] [ByteBuffer|http://download.oracle.com/javase/6/docs/api/java/nio/ByteBuffer.html]) to correctly extract an {{int}} from the original input value. It wraps the input byte array with a {{ByteBuffer}}, sets the byte order to little-endian, and extracts the {{int}}. The result is stored in the integer {{serialNumber}}. [API 2014] to correctly extract an int
from the original input value. It wraps the input byte array with a ByteBuffer
, sets the byte order to little-endian, and extracts the int
. The result is stored in the integer serialNumber
. Class ByteBuffer
provides analogous get and put methods for other numeric types.
Code Block | ||
---|---|---|
| ||
try { DataInputStream dis = null; try { dis = new DataInputStream( new FileInputStream("data")); byte[] buffer = new byte[4]; int bytesRead = dis.read(buffer); // Bytes are read into buffer if (bytesRead != 4) { throw new IOException("Unexpected End of Stream"); } int serialNumber = ByteBuffer.wrap(buffer).order(ByteOrder.LITTLE_ENDIAN).getInt(); } finally { if (dis != null) { try { dis.close(); } catch (IOException x) { // Handle error } } } } catch (IOException x) { // handleHandle error } |
...
Compliant Solution (Define Special-Purpose Methods)
An alternative compliant solution is to define read and write methods that support the necessary byte-swapping while reading from or writing to the file. In this example, the readLittleEndianInteger()
method reads four bytes into a byte buffer and then pieces together the integer in the correct order. The writeLittleEndianInteger()
method obtains bytes by repeatedly casting the integer so that the least significant byte is extracted on successive right shifts. Long
values can be handled by defining a byte buffer of size eight8.
Code Block | ||
---|---|---|
| ||
// readRead method public static int readLittleEndianInteger(InputStream ips) throws IOException { byte[] buffer = new byte[4]; int check = ips.read(buffer); if (check != 4) { throw new IOException("Unexpected End of Stream"); } int result = (buffer[3] << 24) | (buffer[2] << 16) | (buffer[1] << 8) | buffer[0]; return result; } // writeWrite method public static void writeLittleEndianInteger(int i, OutputStream ops) throws IOException { byte[] buffer = new byte[4]; buffer[0] = (byte) i; buffer[1] = (byte) (i >> 8); buffer[2] = (byte) (i >> 16); buffer[3] = (byte) (i >> 24); ops.write(buffer); } |
Compliant Solution (
...
reverseBytes()
)
When programming for JDK 1.5 +and later, use the reverseBytes()
method defined in the classes Character
, Short
, Integer
, and Long
to reverse the order of the integral value's bytes. Note that classes Float
and Double
lack such a method.
Code Block | ||
---|---|---|
| ||
public static int reverse(int i) { return Integer.reverseBytes(i); } |
...
Reading and writing data without considering endianness can lead to serious misinterpretations of both the magnitude and sign of the data.
Rule | Severity | Likelihood | Remediation Cost | Priority | Level |
---|---|---|---|---|---|
FIO12-J |
Low |
Unlikely |
Low | P3 | L3 |
Automated Detection
Automated detection is infeasible in the general case.
Tool | Version | Checker | Description | ||||||
---|---|---|---|---|---|---|---|---|---|
Parasoft Jtest |
| CERT.FIO12.PMRWLED | Provide methods to read and write little-endian data |
Related Guidelines
Bibliography
[ |
[[API 2006
http://download.oracle.com/javase/6/docs/api/java/nio/ByteBuffer.html]: Methods wrap
and order
. Class [Integer
http://download.oracle.com/javase/6/docs/api/java/lang/Integer.html]: method reverseBytes
]]></ac:plain-text-body></ac:structured-macro>
<ac:structured-macro ac:name="unmigrated-wiki-markup" ac:schema-version="1" ac:macro-id="c6e552ab-0283-4bb1-ad74-9a6efae9bae1"><ac:plain-text-body><![CDATA[
[[Cohen 1981
| |
"On Holy Wars and a Plea for Peace |
]]></ac:plain-text-body></ac:structured-macro>
" |
] | Chapter 2 |
, "Primitive Data Types, Cross-Platform |
]]></ac:plain-text-body></ac:structured-macro>
Issues" |
...
FIO11-J. Do not attempt to read raw binary data as character data 12. Input Output (FIO)