Sensitive data must be protected from eavesdropping and malicious tampering during transit. An Obfuscated Transfer Object \[[Steel 2005|AA. Bibliography#Steel 05]\] that is strongly encrypted can protect data in exchanges that involve multiple business tiers or end user systems. This approach is known as _sealing_ the object. To guarantee object integrity, apply a digital signature to the sealed object. eavesdropping. All data that crosses a trust boundary must be protected from malicious tampering. An obfuscated transfer object [Steel 2005] that is strongly encrypted can protect data. This approach is known as sealing the object. To guarantee object integrity, apply a digital signature to the sealed object. Wiki Markup
Sealing and signing objects is the preferred mechanism to secure data when
- Serializing or transporting sensitive data is necessaryTransporting sensitive data or serializing any data.
- A secure communication channel such as Secure Sockets Layer (SSL) is absent or is too costly for limited transactions.
- Some sensitive Sensitive data must persist over an extended period of time (e.g. on an external for example, on a hard drive).
Avoid using home-brewed cryptographic algorithms; such algorithms will almost certainly introduce unnecessary vulnerabilities. Applications that apply home-brewed "cryptography" in the readObject()
and writeObject()
methods are prime examples of anti-patterns.
Wiki Markup |
---|
Furthermore, Abadi and Needham have suggested \[[Abadi 1996|AA. Bibliography#Abadi 96]\] a useful principle of secure software design |
When a principal signs material that has already been encrypted, it should not be inferred that the principal knows the content of the message. On the other hand, it is proper to infer that the principal that signs a message and then encrypts it for privacy knows the content of the message.
Wiki Markup |
---|
The rationale is that any malicious party can intercept the originally signed encrypted message from the originator, strip the signature and add its own signature to the encrypted message. Both the malicious party, and the receiver have no information about the contents of the original message as it is encrypted and then signed (it can only be decrypted after verifying the signature). The receiver has no way of confirming the sender's identity unless the legitimate sender's public key is obtained over a secure channel. One of the three CCITT X.509 standard protocols was susceptible to such an attack \[[CCITT 1988|AA. Bibliography#CCITT 88]\]. |
This rule involves the intential serialization of sensitive information. See SER03-J. Prevent serialization of unencrypted, sensitive data about preventing the unintentional serialization of sensitive information.
The subsequent code examples all involve the following code sample. This code sample posits a map that is serializable, as well as a function to populate the map with interesting values, and a function to check the map for those values.
However, using existing cryptography libraries inside readObject()
and writeObject()
is perfrectly warranted.
This rule applies to the intentional serialization of sensitive information. SER03-J. Do not serialize unencrypted sensitive data is meant to prevent the unintentional serialization of sensitive information.
Noncompliant Code Example
The code examples for this rule are all based on the following code example:
Code Block |
---|
class SerializableMap<K,V> implements Serializable {
final static long serialVersionUID = -2648720192864531932L;
private Map<K,V> map;
public SerializableMap() {
map = new HashMap<K,V>();
}
public Object getData(K key) {
return map.get(key);
}
public void setData(K key, V data) {
map.put(key, data);
}
}
public class MapSerializer {
public static SerializableMap<String, Integer> buildMap() {
SerializableMap<String, Integer> map =
new SerializableMap<String, Integer>();
map.setData("John Doe", new Integer(123456789));
map.setData("Richard Roe", new Integer(246813579));
return map;
}
public static void InspectMap(SerializableMap<String, Integer> map) {
System.out.println("John Doe's number is " + map.getData("John Doe"));
System.out.println("Richard Roe's number is " +
map.getData("Richard Roe") |
Code Block |
class SerializableMap<K,V> implements Serializable { final static long serialVersionUID = -2648720192864531932L; private Map<K,V> map; public SerializableMap() { map = new HashMap<K,V>(); } public Object getData(K key) { return map.get(key); } public static void setDatamain(K key, V dataString[] args) { map.put(key, data);// ... } } public class MapSerializer { static public SerializableMap< String, Integer> buildMap() { SerializableMap< String, Integer> map = new SerializableMap< String, Integer>(); map.setData("John Doe", new Integer( 123456789)); map.setData("Richard Roe", new Integer( 246813579)); return map; } static public void InspectMap(SerializableMap< String, Integer> map) { System.out.println("John Doe's number is " + map.getData("John Doe")); System.out.println("Richard Roe's number is " + map.getData("Richard Roe")); } public static void main(String[] args) { // ... } } |
Noncompliant Code Example
This noncompliant code example simply serializes the map and then deserializes it. Consequently, the map is capable of being serialized and transferred across different business tiers. Unfortunately, there are no safeguards against byte stream manipulation attacks while the binary data is in transit. Likewise, anyone can reverse engineer the serialized stream data from its hexadecimal notation to reveal the data in the HashMap
.
This code sample defines a serializable map, a method to populate the map with values, and a method to check the map for those values.
This noncompliant code example simply serializes then deserializes the map. Consequently, the map can be serialized and transferred across different business tiers. Unfortunately, the example lacks any safeguards against byte stream manipulation attacks while the binary data is in transit. Likewise, anyone can reverse-engineer the serialized stream data to recover the data in the HashMap
. Anyone would also be able to tamper with the map and produce an object that made the deserializer crash or hang.
Code Block | ||
---|---|---|
| ||
public static void main(String[] args)
throws IOException, ClassNotFoundException {
// Build map
SerializableMap<String, Integer> map = buildMap();
// Serialize map
ObjectOutputStream out =
new ObjectOutputStream(new FileOutputStream("data"));
out.writeObject(map);
out.close();
// Deserialize map
ObjectInputStream in =
new ObjectInputStream(new FileInputStream("data"));
map = (SerializableMap<String, Integer>) in.readObject();
in.close | ||
Code Block | ||
| ||
public static void main(String[] args) throws IOException, ClassNotFoundException { // Build map SerializableMap< String, Integer> map = buildMap(); // SerializeInspect map ObjectOutputStream out = new ObjectOutputStream(new FileOutputStream("data")); out.writeObject( map); out.close(); // Deserialize map ObjectInputStream in = new ObjectInputStream(new FileInputStream("data")); map = (SerializableMap< String, Integer>) in.readObject(); in.close(); // Inspect map InspectMap( map); } |
If the data in the map is considered sensitive, this example will also violate SER03-J. Prevent serialization of unencrypted, sensitive data.
Noncompliant Code Example (Seal)
To provide message confidentiality, use the javax.crypto.SealedObject
class. This class encapsulates a serialized object and encrypts (or seals) it. A strong cryptographic algorithm that uses a secure cryptographic key and padding scheme must be employed to initialize the Cipher
object parameter. The seal
and unseal
utility methods provide the encryption and decryption facilities respectively.
This noncompliant code example encrypts the map into a SealedObject
, rendering the data inaccessable to prying eyes. However, since the data is not signed, it provides no proof of authentication.
InspectMap(map);
}
|
If the data in the map were sensitive, this example would also violate SER03-J. Do not serialize unencrypted sensitive data.
Noncompliant Code Example (Seal)
This noncompliant code example uses the javax.crypto.SealedObject
class to provide message confidentiality. This class encapsulates a serialized object and encrypts (or seals) it. A strong cryptographic algorithm that uses a secure cryptographic key and padding scheme must be employed to initialize the Cipher
object parameter. The seal()
and unseal()
utility methods provide the encryption and decryption facilities respectively.
This noncompliant code example encrypts the map into a SealedObject
, rendering the data inaccessible to prying eyes. However, the program fails to sign the data, rendering it impossible to authenticate.
Code Block | ||
---|---|---|
| ||
public static void main(String[] args)
throws IOException, GeneralSecurityException,
ClassNotFoundException {
// Build map
SerializableMap<String, Integer> map = buildMap();
// Generate sealing key & seal map
KeyGenerator generator;
generator = KeyGenerator.getInstance("AES");
generator.init(new SecureRandom());
Key key = generator.generateKey();
Cipher cipher = Cipher.getInstance("AES");
cipher.init(Cipher.ENCRYPT_MODE, key);
SealedObject sealedMap = new SealedObject(map, cipher);
// Serialize map
ObjectOutputStream out =
new ObjectOutputStream(new FileOutputStream("data"));
out.writeObject(sealedMap);
out.close | ||
Code Block | ||
| ||
public static void main(String[] args) throws IOException, GeneralSecurityException, ClassNotFoundException { // Build map SerializableMap< String, Integer> map = buildMap(); // GenerateDeserialize sealingmap key &ObjectInputStream sealin map= KeyGenerator generator; generatornew = KeyGenerator.getInstanceObjectInputStream(new FileInputStream("AESdata")); generator.init(new SecureRandom()sealedMap = (SealedObject) in.readObject(); Key key = generator.generateKeyin.close(); Cipher// Unseal map cipher = Cipher.getInstance("AES"); cipher.init( Cipher.ENCRYPTDECRYPT_MODE, key); SealedObject sealedMapmap = new SealedObject(SerializableMap<String, map, Integer>) sealedMap.getObject(cipher); // SerializeInspect map ObjectOutputStream out = new ObjectOutputStream(new FileOutputStream("data")); out.writeObject( sealedMap); out.close(); // Deserialize map ObjectInputStream in = new ObjectInputStream(new FileInputStream("data")); sealedMap = (SealedObject) in.readObject(); in.close(); // Unseal map cipher = Cipher.getInstance("AES"); cipher.init( Cipher.DECRYPT_MODE, key); map = (SerializableMap< String, Integer>) sealedMap.getObject(cipher); // Inspect map InspectMap( map); } |
Noncompliant Code Example (Seal, Sign)
Use the java.security.SignedObject
class to sign an object, when the integrity of the object is to be ensured. The two new arguments passed in to the SignedObject()
method to sign the object are Signature
and a private key derived from a KeyPair
object. To verify the signature, a PublicKey
as well as a Signature
argument is passed to the SignedObject.verify()
method.
This noncompliant code example signs the object as well as sealing it. Unfortunately, the signing occurs after the sealing. As discussed above, anyone can sign a sealed object, and so it cannot be assumed that the signer is the true originator of the object.
InspectMap(map);
}
|
Noncompliant Code Example (Seal Then Sign)
This noncompliant code example uses the java.security.SignedObject
class to sign an object when the integrity of the object must be ensured. The two new arguments passed in to the SignedObject()
method to sign the object are Signature
and a private key derived from a KeyPair
object. To verify the signature, a PublicKey
as well as a Signature
argument is passed to the SignedObject.verify()
method.
This noncompliant code example signs the object as well as seals it. According to Abadi and Needham [Abadi 1996],
When a principal signs material that has already been encrypted, it should not be inferred that the principal knows the content of the message. On the other hand, it is proper to infer that the principal that signs a message and then encrypts it for privacy knows the content of the message.
Any malicious party can intercept the originally signed encrypted message from the originator, strip the signature, and add its own signature to the encrypted message. Both the malicious party and the receiver have no information about the contents of the original message because it is encrypted and then signed (it can be decrypted only after verifying the signature). The receiver has no way of confirming the sender's identity unless the legitimate sender's public key is obtained over a secure channel. One of the three Internal Telegraph and Telephone Consultative Committee (CCITT) X.509 standard protocols was susceptible to such an attack [CCITT 1988].
Because the signing occurs after the sealing, it cannot be assumed that the signer is the true originator of the object.
Code Block | ||
---|---|---|
| ||
public static void main(String[] args)
throws IOException, GeneralSecurityException,
ClassNotFoundException {
// Build map
SerializableMap<String, Integer> map = buildMap( | ||
Code Block | ||
| ||
public static void main(String[] args) throws IOException, GeneralSecurityException, ClassNotFoundException { // Build map SerializableMap< String, Integer> map = buildMap(); // Generate sealing key & seal map KeyGenerator generator; generator = KeyGenerator.getInstance("AES"); generator.init(new SecureRandom()); Key key = generator.generateKey(); Cipher cipher = Cipher.getInstance("AES"); cipher.init( Cipher.ENCRYPT_MODE, key); SealedObject sealedMap = new SealedObject( map, cipher); // Generate signingsealing public/private key pair & signseal map KeyGenerator generator; KeyPairGenerator kpggenerator = KeyPairGeneratorKeyGenerator.getInstance("DSAAES"); KeyPair kpgenerator.init(new SecureRandom()); Key key = kpggenerator.generateKeyPairgenerateKey(); SignatureCipher sigcipher = SignatureCipher.getInstance("SHA1withDSAAES"); SignedObject signedMap = new SignedObject( sealedMap, kp.getPrivate(), sigcipher.init(Cipher.ENCRYPT_MODE, key); SealedObject sealedMap = new SealedObject(map, cipher); // Serialize Generate signing public/private key pair & sign map ObjectOutputStreamKeyPairGenerator outkpg = new ObjectOutputStream(new FileOutputStreamKeyPairGenerator.getInstance("dataDSA")); out.writeObject( signedMapKeyPair kp = kpg.generateKeyPair(); Signature sig = outSignature.closegetInstance("SHA1withDSA"); //SignedObject DeserializesignedMap map= ObjectInputStream in = new ObjectInputStreamSignedObject(new FileInputStream("data"));sealedMap, kp.getPrivate(), sig); signedMap// = (SignedObject) in.readObject(Serialize map ObjectOutputStream out = new ObjectOutputStream(new FileOutputStream("data")); out.writeObject(signedMap); inout.close(); // UnsignDeserialize map if (!signedMap.verify(kp.getPublic(), sig)) {ObjectInputStream in = throw new ObjectInputStream(new GeneralSecurityExceptionFileInputStream("Map failed verificationdata")); } signedMap = sealedMap = (SealedObject) signedMap.getObject(SignedObject) in.readObject(); in.close(); // Unseal Verify signature and retrieve map cipher = Cipher.getInstance("AES"); cipher.init( Cipher.DECRYPT_MODE, keyif (!signedMap.verify(kp.getPublic(), sig)) { throw new GeneralSecurityException("Map failed verification"); map} sealedMap = (SerializableMap< String, Integer>SealedObject) sealedMapsignedMap.getObject(cipher); // InspectUnseal map cipher = InspectMap( map); Cipher.getInstance("AES"); cipher.init(Cipher.DECRYPT_MODE, key); map = (SerializableMap<String, Integer>) sealedMap.getObject(cipher); // Inspect map InspectMap(map); } |
Compliant Solution (Sign
...
Then Seal)
This compliant solution correctly signs the object before sealing it. This approach provides a guarantee of authenticity to the object , in addition to protection from man-in-the-middle attacks.
Code Block | ||
---|---|---|
| ||
public static void main(String[] args) throws IOException, GeneralSecurityException, ClassNotFoundException { // Build map SerializableMap< StringSerializableMap<String, Integer> map = buildMap(); // Generate signing public/private key pair & sign map KeyPairGenerator kpg = KeyPairGenerator.getInstance("DSA"); KeyPair kp = kpg.generateKeyPair(); Signature sig = Signature.getInstance("SHA1withDSA"); SignedObject signedMap = new SignedObject( map, kp.getPrivate(), sig); // Generate sealing key & seal map KeyGenerator generator; generator = KeyGenerator.getInstance("AES"); generator.init(new SecureRandom()); Key key = generator.generateKey(); Cipher cipher = Cipher.getInstance("AES"); cipher.init( Cipher.ENCRYPT_MODE, key); SealedObject sealedMap = new SealedObject( signedMap, cipher); // Serialize map ObjectOutputStream out = new ObjectOutputStream(new FileOutputStream("data")); out.writeObject( sealedMap); out.close(); // Deserialize map ObjectInputStream in = new ObjectInputStream(new FileInputStream("data")); sealedMap = (SealedObject) in.readObject(); in.close(); // Unseal map cipher = Cipher.getInstance("AES"); cipher.init( Cipher.DECRYPT_MODE, key); signedMap = (SignedObject) sealedMap.getObject(cipher); // Unsign Verify signature and retrieve map if (!signedMap.verify(kp.getPublic(), sig)) { throw new GeneralSecurityException("Map failed verification"); } map = (SerializableMap<String, Integer>) signedMap.getObject(); // Inspect map InspectMap( map); } |
Exceptions
unmigratedSER02-wikiJ-markup*SER02-EX0:* A reasonable use for signing a sealed object is to certify the authenticity of a sealed object passed from elsewhere. In the spirit of the \[[Abadi 1996|AA. Bibliography#Abadi 96]\] quotation above, this represents a commitment _about the sealed object itself_ rather than about its content.elsewhere. This use represents a commitment about the sealed object itself rather than about its content [Abadi 1996].
SER02-JSER02-EX1: Signing and sealing is required only required for objects that must cross a trust boundary. Objects that never leave the trust boundary need not be signed or sealed. For instanceexample, if when an entire network is contained within a trust boundary, then objects that never leave this that network need not be signed or sealed. Another example is objects that are only sent down a signed binary stream.
Risk Assessment
Failure to sign and /or then seal objects during transit can lead to loss of object integrity or confidentiality.
Rule | Severity | Likelihood | Remediation Cost | Priority | Level |
---|---|---|---|---|---|
SER02-J |
Medium |
Probable |
High | P4 | L3 |
Automated Detection
Not This rule is not amenable to static analysis in the general case.
Related Vulnerabilities
Search for vulnerabilities resulting from the violation of this rule on the CERT website.
Related Guidelines
<ac:structured-macro ac:name="unmigrated-wiki-markup" ac:schema-version="1" ac:macro-id="8bd47f96-9a1d-4b09-871d-c1ad9103784a"><ac:plain-text-body><![CDATA[ | [[MITRE 2009 | AA. Bibliography#MITRE 09]] | [CWE ID 319 | http://cwe.mitre.org/data/definitions/319.html] "Cleartext Transmission of Sensitive Information" | ]]></ac:plain-text-body></ac:structured-macro> |
Bibliography
<ac:structured-macro ac:name="unmigrated-wiki-markup" ac:schema-version="1" ac:macro-id="793433c2-3973-402d-89ad-96dcff8610de"><ac:plain-text-body><![CDATA[ | [[API 2006 | AA. Bibliography#API 06]] |
| ]]></ac:plain-text-body></ac:structured-macro> |
<ac:structured-macro ac:name="unmigrated-wiki-markup" ac:schema-version="1" ac:macro-id="c7235f91-f0f6-4356-9449-a5aecefaf9e6"><ac:plain-text-body><![CDATA[ | [[Gong 2003 | AA. Bibliography#Gong 03]] | 9.10 Sealing Objects | ]]></ac:plain-text-body></ac:structured-macro> |
<ac:structured-macro ac:name="unmigrated-wiki-markup" ac:schema-version="1" ac:macro-id="9e6b11b9-b4d8-4e19-9a9d-6f51d9be20eb"><ac:plain-text-body><![CDATA[ | [[Harold 1999 | AA. Bibliography#Harold 99]] | Chapter 11: Object Serialization, Sealed Objects | ]]></ac:plain-text-body></ac:structured-macro> |
<ac:structured-macro ac:name="unmigrated-wiki-markup" ac:schema-version="1" ac:macro-id="e9057ce3-ae22-4d80-ac19-3706602ffb22"><ac:plain-text-body><![CDATA[ | [[Neward 2004 | AA. Bibliography#Neward 04]] | Item 64: Use SignedObject to provide integrity of Serialized objects | ]]></ac:plain-text-body></ac:structured-macro> |
| Item 65: Use SealedObject to provide confidentiality of Serializable objects | |||
<ac:structured-macro ac:name="unmigrated-wiki-markup" ac:schema-version="1" ac:macro-id="0d40a729-db15-4abd-b832-e835e8b995dc"><ac:plain-text-body><![CDATA[ | [[Steel 2005 | AA. Bibliography#Steel 05]] | Chapter 10: Securing the Business Tier, Obfuscated Transfer Object | ]]></ac:plain-text-body></ac:structured-macro> |
.
Tool | Version | Checker | Description | ||||||
---|---|---|---|---|---|---|---|---|---|
CodeSonar |
| JAVA.IO.INJ.ANDROID.MESSAGE | Android Message Injection (Java) |
Related Guidelines
Bibliography
[API 2014] | |
Section 9.10, "Sealing Objects" | |
Chapter 11, "Object Serialization" | |
Item 64, "Use | |
Chapter 10, "Securing the Business Tier" |
...
16. Serialization (SER) SER03-J. Prevent serialization of unencrypted, sensitive data